
Java DB Developer's Guide
Version 10.5

Derby Document build:
August 10, 2009, 10:01:53 AM (EDT)

Version 10.5 Java DB Developer's Guide

i

Contents
Copyright..5

License... 6

Relationship between Java DB and Derby...10

About this guide..11
Purpose of this guide..11
Audience... 11
How this guide is organized...11

After installing... 13
The installation directory.. 13

Batch files and shell scripts.. 13
Derby and JVMs...13
Derby libraries and classpath.. 14
UNIX-specific issues..14

Configuring file descriptors..14
Scripts.. 14

Upgrades.. 15
Preparing to upgrade.. 15
Upgrading a database... 15
Soft upgrade limitations..16

JDBC applications and Derby basics... 17
Application development overview..17
Derby embedded basics... 17

Derby JDBC driver.. 17
Derby JDBC database connection URL..18
Derby system...19
A Derby database... 23
Connecting to databases...26
Working with the database connection URL attributes....................................... 29

Working with Derby properties.. 32
Properties overview... 32
Setting Derby properties..34
Properties case study..36

Deploying Derby applications..38
Deployment issues.. 38

Embedded deployment application overview.. 38
Deploying Derby in an embedded environment..39

Creating Derby databases for read-only use..40
Creating and preparing the database for read-only use..................................... 40
Deploying the database on the read-only media.. 40
Transferring read-only databases to archive (jar or zip) files.............................. 40
Accessing a read-only database in a zip/jar file..41
Accessing databases within a jar file using the classpath.................................. 42
Databases on read-only media and DatabaseMetaData.................................... 42

Loading classes from a database..43
Class loading overview..43
Dynamic changes to jar files or to the database jar classpath............................45

Derby server-side programming..46
Programming database-side JDBC routines...46

Version 10.5 Java DB Developer's Guide

ii

Database-side JDBC routines and nested connections......................................46
Database-side JDBC routines using non-nested connections............................ 47
Database-side JDBC routines and SQLExceptions.. 47
User-defined SQLExceptions.. 48

Programming trigger actions..48
Trigger action overview... 48
Performing referential actions... 49
Accessing before and after rows...49
Examples of trigger actions...49
Triggers and exceptions.. 49

Programming Derby-style table functions.. 50
Overview of Derby-style table functions..50
Example Derby-style table function...52
Optimizer support for Derby-style table functions... 52

Controlling Derby application behavior..57
The JDBC connection and transaction model..57

Connections... 57
Transactions.. 58

Result set and cursor mechanisms...61
Simple non-updatable result sets..61
Updatable result sets...62
Result sets and auto-commit...66
Scrollable result sets... 66
Holdable result sets...67

Locking, concurrency, and isolation... 68
Isolation levels and concurrency... 69
Configuring isolation levels..71
Lock granularity... 72
Types and scope of locks in Derby systems.. 72
Deadlocks.. 75

Working with multiple connections to a single database....................................80
Deployment options and threading and connection modes................................ 80
Multi-user database access...81
Multiple connections from a single application..81

Working with multiple threads sharing a single connection...............................81
Pitfalls of sharing a connection among threads.. 81
Multi-thread programming tips...82
Example of threads sharing a statement.. 83

Working with database threads in an embedded environment...........................83
Working with Derby SQLExceptions in an application..83

Information provided in SQL Exceptions...83

Using Derby as a J2EE resource manager.. 85
Classes that pertain to resource managers..85
Getting a DataSource.. 86
Shutting down or creating a database.. 86

Derby and Security... 88
Configuring security for your environment.. 89

Configuring security in a client/server environment.. 90
Configuring security in an embedded environment...90

Working with user authentication..90
Enabling user authentication... 92
Defining users..92
External directory service.. 93
Built-in Derby users...97

Version 10.5 Java DB Developer's Guide

iii

List of user authentication properties.. 98
Programming applications for Derby user authentication....................................99

Users and authorization identifiers..100
Authorization identifiers, user authentication, and user authorization............... 100
Database owner ... 101
User names and schemas.. 101
Exceptions when using authorization identifiers..101

User authorizations..101
Setting the default connection access mode.. 103
Setting access for individual users..103
Setting the SQL standard authorization mode.. 104

Encrypting databases on disk..110
Requirements for Derby encryption.. 111
Working with encryption.. 111

Signed jar files... 116
Notes on the Derby security features..116
User authentication and authorization examples...117

User authentication example in a client/server environment.............................117
User authentication example in a single-user, embedded environment............ 123
User authentication examples using SQL authorization....................................129

Running Derby under a security manager..144
Granting permissions to Derby..144
Examples of Java 2 security policy files for embedded Derby.......................... 146

Developing tools and using Derby with an IDE...148
Offering connection choices to the user.. 148

The DriverPropertyInfo Array.. 148
Using Derby with IDEs.. 149

IDEs and multiple JVMs..149

SQL tips... 151
Retrieving the database connection URL... 151
Supplying a parameter only once..151
Defining an identity column... 151
Using third-party tools.. 151
Tricks of the VALUES clause... 152

Multiple rows..152
Mapping column values to return values.. 152
Creating empty queries... 152

Localizing Derby..153
SQL parser support for Unicode..153
Character-based collation in Derby... 153
Other components with locale support...155
Messages libraries...156

Derby and standards.. 157
XML data types and operators... 158

Trademarks.. 159

Java DB Developer's Guide

4

Apache Software FoundationJava DB Developer's GuideApache Derby

Java DB Developer's Guide

5

Copyright

Copyright 2004-2009 The Apache Software Foundation

Copyright 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, U.S.A.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Java DB Developer's Guide

6

License

The Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,
 reproduction, and distribution as defined by Sections 1 through
 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized
 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under
 common control with that entity. For the purposes of this
 definition, "control" means (i) the power, direct or indirect,
 to cause the direction or management of such entity, whether by
 contract or otherwise, or (ii) ownership of fifty percent (50%)
 or more of the outstanding shares, or (iii) beneficial ownership
 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making
 modifications, including but not limited to software source code,
 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or
 Object form, that is based on (or derived from) the Work and
 for which the editorial revisions, annotations, elaborations,
 or other modifications represent, as a whole, an original work
 of authorship. For the purposes of this License, Derivative
 Works shall not include works that remain separable from, or
 merely link (or bind by name) to the interfaces of, the Work
 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or
 additions to that Work or Derivative Works thereof, that is
 intentionally submitted to Licensor for inclusion in the Work
 by the copyright owner or by an individual or Legal Entity
 authorized to submit on behalf of the copyright owner. For the
 purposes of this definition,
 "submitted" means any form of electronic, verbal, or written
 communication sent to the Licensor or its representatives,
 including but not limited to communication on electronic mailing
 lists, source code control systems, and issue tracking systems

Java DB Developer's Guide

7

 that are managed by, or on behalf of, the Licensor for the
 purpose of discussing and improving the Work, but excluding
 communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a
 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal
 Entity on behalf of whom a Contribution has been received by
 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions
 of this License, each Contributor hereby grants to You a
 perpetual, worldwide, non-exclusive, no-charge, royalty-free,
 irrevocable copyright license to reproduce, prepare Derivative
 Works of, publicly display, publicly perform, sublicense, and
 distribute the Work and such Derivative Works in Source or
 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have
 made, use, offer to sell, sell, import, and otherwise transfer
 the Work, where such license applies only to those patent claims
 licensable by such Contributor that are necessarily infringed by
 their Contribution(s) alone or by combination of their
 Contribution(s) with the Work to which such Contribution(s) was
 submitted. If You institute patent litigation against any entity
 (including a cross-claim or counterclaim in a lawsuit) alleging
 that the Work or a Contribution incorporated within the Work
 constitutes direct or contributory patent infringement, then any
 patent licenses granted to You under this License for that Work
 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute
 must include a readable copy of the attribution notices
 contained within such NOTICE file, excluding those notices
 that do not pertain to any part of the Derivative Works, in
 at least one of the following places: within a NOTICE text
 file distributed as part of the Derivative Works; within the
 Source form or documentation, if provided along with the
 Derivative Works; or, within a display generated by the
 Derivative Works, if and wherever such third-party notices
 normally appear. The contents of the NOTICE file are for
 informational purposes only and do not modify the License.
 You may add Your own attribution notices within Derivative
 Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional
 attribution notices cannot be construed as modifying the
 License.

 You may add Your own copyright statement to Your modifications

Java DB Developer's Guide

8

 and may provide additional or different license terms and
 conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole,
 provided Your use, reproduction, and distribution of the Work
 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state
 otherwise, any Contribution intentionally submitted for
 inclusion in the Work by You to the Licensor shall be under the
 terms and conditions of this License, without any additional
 terms or conditions. Notwithstanding the above, nothing herein
 shall supersede or modify the terms of any separate license
 agreement you may have executed with Licensor regarding such
 Contributions.

 6. Trademarks. This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use
 in describing the origin of the Work and reproducing the content
 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or
 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
 determining the appropriateness of using or redistributing the
 Work and assume any risks associated with Your exercise of
 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and
 grossly negligent acts) or agreed to in writing, shall any
 Contributor be liable to You for damages, including any direct,
 indirect, special, incidental, or consequential damages of any
 character arising as a result of this License or out of the use
 or inability to use the Work (including but not limited to
 damages for loss of goodwill, work stoppage, computer failure or
 malfunction, or any and all other commercial damages or losses),
 even if such Contributor has been advised of the possibility of
 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by
 reason of your accepting any such warranty or additional
 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Java DB Developer's Guide

9

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

Java DB Developer's Guide

10

Relationship between Java(TM) DB and Derby

Java(TM) DB is a relational database management system that is based on the Java
programming language and SQL. Java DB is a commercial release of the Apache
Software Foundation's (ASF) open source relational database project. The Apache
project is called Derby.

The Java DB product includes Derby without any modification whatsoever to the
underlying source code.

Technical support is available for purchase for the Java DB product through Sun.

Because Java DB and Derby have the same functionality, the Java DB documentation
refers to the core functionality as Derby.

Java DB Version 10.5 is based on the Derby Version 10.5 release. References to "Derby"
in the Java DB documentation refer to the Version 10.5 release of Apache Derby.

Java DB Developer's Guide

11

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Java DB.

Purpose of this guide
This guide explains how to use the core Derby technology and is for developers building
Derby applications.

It describes basic Derby concepts, such as how you create and access Derby databases
through JDBC routines and how you can deploy Derby applications.

Audience
This guide is intended for software developers who already know some SQL and Java.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide is organized
This document includes the following sections.

• After installing

Explains the installation layout.
• Upgrades

Explains how to upgrade a database created with a previous version of Derby.
• JDBC applications and Derby basics

Basic details for using Derby, including loading the JDBC driver, specifying a
database URL, starting Derby, and working with Derby properties.

• Deploying Derby applications

An overview of different deployment scenarios, and tips for getting the details right
when deploying applications.

• Derby server-side programming

Describes how to program database-side JDBC routines, triggers, and table
functions.

• Controlling Derby application behavior

JDBC, cursors, locking and isolation levels, and multiple connections.
• Using Derby as a J2EE resource manager

Information for programmers developing back-end components in a J2EE system.
• Derby and Security

Describes how to use the security features of Derby.
• Developing tools and using Derby with an IDE

Tips for tool designers.
• SQL tips

Insiders' tricks of the trade for using SQL.
• Localizing Derby

Java DB Developer's Guide

12

An overview of database localization.
• Derby and standards

Describes those parts of Derby that are non-standard or not typical for a database
system.

Java DB Developer's Guide

13

After installing

This section provides reference information about the installation directory, JVMs,
classpath, upgrades, and platform-specific issues.

Review the index.html file at the top level of the Derby distribution for pointers to
reference and tutorial information about Derby. See the Release Notes for information on
platform support, changes that may affect your existing applications, defect information,
and recent documentation updates. See Getting Started with Java DB for basic product
descriptions, information on getting started, and directions for setting the path and the
classpath.

The installation directory
You may install the Derby software in a directory of your choice.

See the index.html file for pointers to information on Derby.

The distribution includes setup scripts that use an environment variable called
DERBY_HOME. The variable's value is set to the Derby base directory.

C:>echo %DERBY_HOME%
C:\DERBY_HOME

If you want to set your own environment, Getting Started with Java DB instructs you on
setting its value to the directory in which you installed the Derby software.

The distribution for Derby contains all the files you need, including the documentation set,
some example applications, and a sample database.

Details about the installation:

• index.html in the top-level directory is the top page for the on-line documentation.
• RELEASE-NOTES.html, in the top-level Derby base directory, contains important

last-minute information. Read it first.
• /bin contains utilities and scripts for running Derby.
• /demo contains some sample applications, useful scripts, and prebuilt databases.

• /databases includes prebuilt sample databases.
• /programs includes sample applications.

• /docs contains the on-line documentation (including this document).
• /javadoc contains the documented APIs for the public classes and interfaces.

Typically, you use the JDBC interface to interact with Derby; however, you can use
some of these additional classes in certain situations.

• /lib contains the Derby libraries.

Batch files and shell scripts

The /bin directory contains scripts for running some of the Derby tools and utilities. To
customize your environment, put the directory first in your path.

These scripts serve as examples to help you get started with these tools and utilities on
any platform. However, they may require modification in order to run properly on certain
platforms.

Derby and JVMs

Java DB Developer's Guide

14

Derby is a database engine written completely in Java; it will run in any JVM, version 1.4
or higher.

Derby libraries and classpath
Derby libraries are located in the /lib subdirectory of the Derby base directory. You must
set the classpath on your development machine to include the appropriate libraries.

Getting Started with Java DB explains how to set the classpath in a development
environment.

UNIX-specific issues
This section discusses Derby issues specifically related to UNIX platforms.

Configuring file descriptors

Derby databases create one file per table or index. Some operating systems limit the
number of files an application can open at one time.

If the default is a low number, such as 64, you might run into unexpected IOExceptions
(wrapped in SQLExceptions). If your operating system lets you configure the number of
file descriptors, set this number to a higher value.

Scripts

Your installation contains executable script files that simplify invoking the Derby tools.
On UNIX systems, these files might need to have their default protections set to include
execute privilege.

A typical way to do this is with the command chmod +x *.ksh.

Consult the documentation for your operating system for system-specific details.

Java DB Developer's Guide

15

Upgrades

To connect to a database created with a previous version of Derby, you must first
upgrade that database.

Upgrading involves writing changes to the system tables, so it is not possible for
databases on read-only media. The upgrade process:

• marks the database as upgraded to the current release (Version 10.5).
• allows use of new features.

See the release notes for more information on upgrading your databases to this version
of Derby.

Preparing to upgrade
Upgrading your database occurs the first time the new Derby software connects to the
old database.

Before you connect to the database using the new software:

1. Back up your database to a safe location using Derby online/offline backup
procedures.

For more information on backup, see the Java DB Server and Administration Guide.
2. Update your CLASSPATH with the latest jar files.
3. Make sure that there are no older versions of the Derby jar files in your

CLASSPATH. You can determine if you have multiple versions of Derby in your
CLASSPATH by using the sysinfo tool.

To use the sysinfo tool, execute the following command:

java org.apache.derby.tools.sysinfo

The sysinfo tool uses information found in the Derby jar files to determine the
version of any Derby jar in your CLASSPATH. Be sure that you have only one
version of the Derby jar files specified in your CLASSPATH.

Upgrading a database
To upgrade a database, you must explicitly request an upgrade the first time you connect
to the database with the new version of Derby.

Ensure that you complete the prerequisite steps before you upgrade:
• Back up your database before you upgrade.
• Ensure that only the new Derby jar files are in your CLASSPATH.

When you upgrade the database, you can perform a full upgrade or soft upgrade:
• A full upgrade is a complete upgrade of the Derby database. When you perform a

full upgrade, you cannot connect to the database with an older version of Derby and
you cannot revert back to the previous version.

• A soft upgrade allows you to run a newer version of Derby against an existing
database without having to fully upgrade the database. This means that you
can continue to run an older version of Derby against the database. However, if
you perform a soft upgrade, certain features will not be available to you until you
perform a full upgrade.

1. To upgrade the database, select the type of upgrade that you want to perform:

Java DB Developer's Guide

16

Type of upgrade Action

Full upgrade Connect to the database using the
upgrade=true database connection URL
attribute. For example:

jdbc:derby:sample;upgrade=true

Soft upgrade Connect to the database. For example:

connect 'jdbc:derby:sample'

In this example, sample is a database
from a previous version of Derby.

Soft upgrade limitations
Soft upgrade allows you to run a newer version of Derby against an existing database
without having to fully upgrade the database. This means that you can continue to run an
older version of Derby against the database.

If you perform a soft upgrade, you will not be able to perform certain functions that are
not available in older versions of Derby. Specifically, new features that affect the structure
of a database are not available with a soft upgrade. For a list of the new features in a
release, see the Release Notes for that release.

To perform a soft upgrade on a database created using an earlier version of Derby,
simply connect to the database, as shown in the following example:

connect 'jdbc:derby:sample'

Java DB Developer's Guide

17

JDBC applications and Derby basics

This section describes the core Derby functionality. In addition, it details the most basic
Derby deployment, Derby embedded in a Java application.

Application development overview
Derby application developers use JDBC, the application programming interface that
makes it possible to access relational databases from Java programs.

The JDBC API is part of the Java(TM) 2 Platform, Standard Edition and is not specific to
Derby. It consists of the java.sql and javax.sql packages, which is a set of classes and
interfaces that make it possible to access databases (from a number of different vendors,
not just Derby) from a Java application.

To develop Derby applications successfully, you will need to learn JDBC. This section
does not teach you how to program with the JDBC API.

This section covers the details of application programming that are specific to Derby
applications. For example, all JDBC applications typically start their DBMS's JDBC driver
and use a connection URL to connect to a database. This chapter gives you the details
of how to start Derby's JDBC driver and how to work with Derby's connection URL to
accomplish various tasks. It also covers essential Derby concepts such as the Derby
system.

You will find reference information about the particulars of Derby's implementation of
JDBC in the Java DB Reference Manual.

Derby application developers will need to learn SQL. SQL is the standard query language
used with relational databases and is not tied to a particular programming language. No
matter how a particular RDBMS has been implemented, the user can design databases
and insert, modify, and retrieve data using the standard SQL statements and well-defined
data types. SQL-92 is the version of SQL standardized by ANSI and ISO in 1992; Derby
supports entry-level SQL-92 as well as some higher-level features. Entry-level SQL-92 is
a subset of full SQL-92 specified by ANSI and ISO that is supported by nearly all major
DBMSs today. This chapter does not teach you SQL. You will find reference information
about the particulars of Derby's implementation of SQL in the Java DB Reference
Manual.

Derby implements JDBC that allows Derby to serve as a resource manager in a J2EE
compliant system.

Derby embedded basics
This section explains how to use and configure Derby in an embedded environment.

Included in the installation is a sample application program, /demo/programs/simple,
which illustrates how to run Derby embedded in the calling program.

Derby JDBC driver

Derby consists of both the database engine and an embedded JDBC driver. Applications
use JDBC to interact with a database. Applications running on JDK 5 or earlier must load
the driver in order to work with the database.

In an embedded environment, loading the driver also starts Derby.

Java DB Developer's Guide

18

The Derby driver class name for the embedded environment is
org.apache.derby.jdbc.EmbeddedDriver.

In a Java application, you typically load the driver with the static Class.forName method
or with the jdbc.drivers system property. For example:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

java -Djdbc.drivers=org.apache.derby.jdbc.EmbeddedDriver applicationClass

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver
interface" in the Java DB Reference Manual.

If your application runs on JDK 6 or higher, you do not need to explicitly load the
EmbeddedDriver. In that environment, the driver loads automatically.

If your application shuts down Derby or calls the DriverManager.unload method, and you
then want to reload the driver, call the Class.forName().newInstance() method.

Derby JDBC database connection URL

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object.

The standard way to obtain a Connection object is to call the method
DriverManager.getConnection, which takes a String containing a connection URL
(uniform resource locator). A JDBC connection URL provides a way of identifying a
database. It also allows you to perform a number of high-level tasks, such as creating a
database or shutting down the system.

An application in an embedded environment uses a different connection URL from that
used by applications using the Derby Network Server in a client/server environment.
See the Java DB Server and Administration Guide for more information on the Network
Server.

However, all versions of the connection URL (which you can use for tasks besides
connecting to a database) have common features:

• you can specify the name of the database you want to connect to
• you can specify a number of attributes and values that allow you to accomplish

tasks. For more information about what you can specify with the Derby connection
URL, see Database connection examples.

The connection URL syntax is as follows:

jdbc:derby:[subsubprotocol:][databaseName][;attribute=value]*

Subsubprotocol, which is not typically specified, determines how Derby looks for a
database: in a directory, in a class path, or in a jar file. Subsubprotocol is one of the
following:

• directory: The default. Specify this explicitly only to distinguish a database that
might be ambiguous with one on the class path.

• classpath: Databases are treated as read-only databases, and all databaseNames
must begin with at least a slash, because you specify them "relative" to the
classpath directory. See Accessing databases from the classpath for details.

• jar: Databases are treated as read-only databases. DatabaseNames might require
a leading slash, because you specify them "relative" to the jar file. See Accessing
databases from a jar or zip file for details.

jar requires an additional element immediately before the database name:

Java DB Developer's Guide

19

(pathToArchive)

pathToArchive is the path to the jar or zip file that holds the database.

For detailed reference about connection URL attributes and values, see "Setting
attributes for the database connection URL" in the Java DB Reference Manual.

The following example shows the use of the connection URL:

Connection conn = DriverManager.getConnection("jdbc:derby:sample");

Derby system

A Derby database exists within a system.

A Derby system is a single instance of the Derby database engine and the environment
in which it runs. It consists of a system directory, zero or more databases, and a
system-wide configuration. The system directory contains any persistent system-wide
configuration parameters, or properties, specific to that system in a properties file called
derby.properties. This file is not automatically created; you must create it yourself.

The Derby system is not persistent; you must specify the location of the system directory
at every startup.

However, the Derby system and the system directory is an essential part of a running
database or databases. Understanding the Derby system is essential to successful
development and deployment of Derby applications. Derby databases live in a system,
which includes system-wide properties, an error log, and one or more databases.

Figure 1. Derby databases live in a system, which includes system-wide properties,
an error log, and one or more databases.

The system directory can also contain an error log file called derby.log (see The error
log).

Java DB Developer's Guide

20

Each database within that system is contained in a subdirectory, which has the same
name as the database (see A Derby database).

In addition, if you connect to a database outside the current system, it automatically
becomes part of the current system.

One Derby instance for each Java Virtual Machine

You could potentially have two instances of a Derby system (JVM) running on the same
machine at the same time. Each instance must run in a different JVM. Two separate
instances of Derby must not access the same database.

For example, in an embedded environment, an application that accesses Derby
databases starts up the local JDBC driver, which starts up an instance of Derby. If you
start another application, such as ij, and connect to the same database, severe database
corruption can result. See Double-booting system behavior.

Booting databases

The default configuration for Derby is to boot (or start) a database when an application
first makes a connection to it. When Derby boots a database, it checks to see if recovery
needs to be run on the database, so in some unusual cases booting can take some time.

You can also configure your system to automatically boot all databases in the system
when it starts up; see "derby.system.bootAll" in the Java DB Reference Manual. Because
of the time needed to boot a database, the number of databases in the system directory
affects startup performance if you use that configuration.

Once a database has been booted within a Derby system, it remains active until the
Derby system has been shut down or until you shut down the database individually.

When Derby boots a database, a message is added to the log file. The message includes
the Derby version that the database was booted with, for example:

2009-05-08 17:27:11.199 GMT:
 Booting Derby version The Apache Software Foundation - Apache Derby
- 10.5.1.1 - (764942): instance a816c00e-0121-2140-ffd9-fffff0cfee85
on database directory C:\sampledb

The number of databases running in a Derby system is limited only by the amount of
memory available in the JVM.

Shutting down the system

In an embedded environment, when an application shuts down, it should first shut down
Derby.

If the application that started the embedded Derby quits but leaves the Java Virtual
Machine (JVM) running, Derby continues to run and is available for database
connections.

In an embedded system, the application shuts down the Derby system by issuing the
following JDBC call:

DriverManager.getConnection("jdbc:derby:;shutdown=true");

Shutdown commands always raise SQLExceptions.

When a Derby system shuts down, a message goes to the log file:

2009-05-08 17:28:47.140 GMT:
Shutting down instance a816c00e-0121-2140-ffd9-fffff0cfee85

Typically, an application using an embedded Derby engine shuts down Derby just before
shutting itself down. However, an application can shut down Derby and later restart it in

Java DB Developer's Guide

21

the same JVM session. To restart Derby successfully, the application needs to reload
org.apache.derby.jdbc.EmbeddedDriver as follows:

Class.forName(org.apache.derby.jdbc.EmbeddedDriver).newInstance();

Loading the embedded driver starts Derby.

The JDBC specification does not recommend calling newInstance(), but adding a
newInstance() call guarantees that Derby will be booted on any JVM.

It is also possible to shut down a single database instead of the entire Derby system. See
Shutting down Derby or an individual database. You can reboot a database in the same
Derby session after shutting it down.

Defining the system directory

You define the system directory when Derby starts up by specifying a Java system
property called derby.system.home.

If you do not specify the system directory when starting up Derby, the current directory
becomes the system directory.

Derby uses the derby.system.home property to determine which directory is its system
directory - and thus what databases are in its system, where to create new databases,
and what configuration parameters to use. See the Java DB Reference Manual for more
information on this property.

If you specify a system directory at startup that does not exist, Derby creates this new
directory - and thus a new system with no databases-automatically.

The error log

Once you create or connect to a database within a system, Derby begins outputting
information and error messages to the error log.

Typically, Derby writes this information to a log called derby.log in the system
directory, although you can also have Derby send messages to a stream, using
the derby.stream.error.method property. By default, Derby overwrites derby.log
when you start the system. You can configure Derby to append to the log with the
derby.infolog.append property. For information on setting this and other properties, see
the Java DB Reference Manual.

derby.properties

The text file derby.properties contains the definition of properties, or configuration
parameters that are valid for the entire system.

The derby.properties file is not automatically created. If you want to set Derby properties
with this file, you need to create the file yourself. The derby.properties file should be in
the format created by the java.util.Properties.save method. For more information about
properties and the derby.properties file, see Working with Derby properties and the Java
DB Reference Manual.

Double-booting system behavior

Derby attempts to prevent two instances of Derby from booting the same database by
using a file called db.lck inside the database directory.

On all platforms running with a JDK of 1.4 or higher, Derby can successfully prevent a
second instance of Derby from booting the database and thus prevents corruption.

On some platforms running with a JDK lower than 1.4, Derby may prevent a second
instance of Derby from booting the database (previous to JDK 1.4 the ability to do this
was OS dependent).

If this is the case, you will see an SQLException like the following:

Java DB Developer's Guide

22

ERROR XJ040: Failed to start database 'sample', see the next exception
 for details.
ERROR XSDB6: Another instance of Derby might have already booted
the databaseC:\databases\sample.

The error is also written to the error log.

If you are running a JVM prior to 1.4, Derby issues a warning message on some
platforms if an instance of Derby attempts to boot a database that already has a running
instance of Derby attached to it. However, it does not prevent the second instance from
booting, and thus potentially corrupting, the database. (You can change this behavior
with the property derby.database.forceDatabaseLock.)

If a warning message has been issued, corruption might already have occurred.
Corruption can occur even if one of the two booting systems has "readonly" access to the
database.

The warning message looks like this:

WARNING: Derby
(instance 80000000-00d2-3265-de92-000a0a0a0200) is
attempting to boot the database /export/home/sky/wombat
even though Derby
(instance 80000000-00d2-3265-8abf-000a0a0a0200) might still be active.
Only one instance of Derby
should boot a database at a time. Severe and non-recoverable corruption
 can
result and might have already occurred.

The warning is also written to the error log.

If you see this warning, you should close the connection and exit the JVM, minimizing
the risk of a corruption. Close all instances of Derby, then restart one instance of Derby
and shut down the database properly so that the db.lck file can be removed. The warning
message continues to appear until a proper shutdown of the Derby system can delete the
db.lck file.

When developing applications, you might want to configure Derby to append to the
log. Doing so will help you detect when you have inadvertently started more than one
instance of Derby in the same system. For example, when the derby.infolog.append
property is set to true for a system, booting two instances of Derby in the same system
produces the following in the log:

Sat Aug 14 09:42:51 PDT 2005:
Booting Derby version Apache Derby - 10.0.0.1 - (29612):

instance 80000000-00d2-1c87-7586-000a0a0b1300 on database at
directory C:\tutorial_system\sample
--
Sat Aug 14 09:42:59 PDT 2005:
Booting Derby version Apache Derby - 10.0.0.1 - (29612):
instance 80000000-00d2-1c87-9143-000a0a0b1300 on database at
directory C:\tutorial_system\HelloWorldDB

Derby allows you to boot databases that are not in the system directory. While this might
seem more convenient, check that you do not boot the same database with two JVMs.
If you need to access a single database from more than one JVM, you will need to put a
server solution in place. You can allow multiple JVMs that need to access that database
to connect to the server. The Derby Network Server is provided as a server solution.
See the Java DB Server and Administration Guide for more information on the Network
Server.

Java DB Developer's Guide

23

Recommended practices

When developing Derby applications, create a single directory to hold your database or
databases.

Give this directory a unique name, to help you remember that:
• All databases exist within a system.
• System-wide properties affect the entire system, and persistent system-wide

properties live in the system directory.
• You can boot all the databases in the system, and the boot-up times of all

databases affect the performance of the system.
• You can preboot databases only if they are within the system. (Databases do not

necessarily have to live inside the system directory, but keeping your databases
there is the recommended practice.)

• Once you connect to a database, it is part of the current system and thus inherits all
system-wide properties.

• Only one instance of Derby can run in a JVM at a single time, and only one instance
of Derby should boot a database at one time. Keeping databases in the system
directory makes it less likely that you would use more than one instance of Derby.

• The error log is located inside the system directory.

A Derby database

A Derby database contains dictionary objects such as tables, columns, indexes, and jar
files. A Derby database can also store its own configuration information.

The database directory

A Derby database is stored in files that live in a directory of the same name as the
database. Database directories typically live in system directories.

A database directory contains the following, as shown in the following figure.

• log directory

Contains files that make up the database transaction log, used internally for data
recovery (not the same thing as the error log).

• seg0 directory

Contains one file for each user table, system table, and index (known as
conglomerates).

• service.properties file

A text file with internal configuration information.
• tmp directory

(might not exist.) A temporary directory used by Derby for large sorts and deferred
updates and deletes. Sorts are used by a variety of SQL statements. For databases
on read-only media, you might need to set a property to change the location of this
directory. See "Creating Derby Databases for Read-Only Use".

• jar directory

(might not exist.) A directory in which jar files are stored when you use database
class loading.

Read-only database directories can be archived (and compressed, if desired) into jar or
zip files. For more information, see Accessing a read-only database in a zip/jar file.

The following figure shows the files and directories in the Derby database directories that
are used by the Derby software.

Figure 2. An example of a Derby database directory and file structure.

Java DB Developer's Guide

24

Derby imposes relatively few limitations on the number and size of databases and
database objects. The following table shows some size limitations of Derby databases
and database objects:

Table 1. Size limits for Derby database objects

Type of Object Limit

tables in each database java.lang.Long.MAX_VALUE

Some operating systems impose a limit to the
number of files allowed in a single directory.

indexes in each table 32,767 or storage

columns in each table 1,012

number of columns on an index
key

16

rows in each table No limit.

size of table No limit. Some operating systems impose a limit on
the size of a single file.

size of row No limit. Rows can span pages. Rows cannot span
tables so some operating systems impose a limit on
the size of a single file, which results in limiting the
size of a table and size of a row in that table.

For a complete list of restrictions on Derby databases and database objects, see the
Java DB Reference Manual.

Creating, dropping, and backing up databases

You create new databases and access existing ones by specifying attributes to the Derby
connection URL.

There is no drop database command. To drop a database, delete the database directory
with operating system commands. The database must not be booted when you remove a
database. You can get a list of booted databases with getPropertyInfo.

To back up a database, you can use the online backup utility. For information on this
utility, see the Java DB Server and Administration Guide.

Java DB Developer's Guide

25

You can also use roll-forward recovery to recover a damaged database. Derby
accomplishes roll-forward recovery by using a full backup copy of the database, archived
logs, and active logs from the most recent time before a failure. For more information on
roll-forward recovery see the Java DB Server and Administration Guide.

Single database shutdown

An application can shut down a single database within a Derby system and leave the rest
of the system running.

Storage and recovery

A Derby database provides persistent storage and recovery. Derby ensures that all
committed transactions are durable, even if the system fails, through the use of a
database transaction log.

Whereas inserts, updates, and deletes may be cached before being written to disk, log
entries tracking all those changes are never cached but always forced to disk when a
transaction commits. If the system or operating system fails unexpectedly, when Derby
next starts up it can use the log to perform recovery, recovering the "lost" transactions
from the log and rolling back uncommitted transactions. Recovery ensures that all
committed transactions at the time the system failed are applied to the database, and all
transactions that were active are rolled back. Thus the databases are left in a consistent,
valid state.

In normal operation, Derby keeps the log small through periodic checkpoints.
Checkpointing marks the portions of the log that are no longer useful, writes changed
pages to disk, then truncates the log.

Derby checkpoints the log file as it fills. It also checkpoints the log when a shutdown
command is issued. Shutting down the JVM in which Derby is running without issuing the
proper shutdown command is equivalent to a system failure from Derby's point of view.

Booting a database means that Derby checks to see if recovery needs to be run on a
database. Recovery can be costly, so using the proper shutdown command improves
connection or startup performance.

Log on separate device

You can put a database's log on a separate device when you create it.

For more information, see the Java DB Server and Administration Guide.

Database pages

Derby tables and indexes, known as conglomerates, consist of two or more pages.

A page is a unit of storage whose size is configurable on a system-wide, database-wide,
or conglomerate-specific basis. By default, a conglomerate grows one page at a time
until eight pages of user data (or nine pages of total disk use, which includes one page
of internal information) have been allocated. (You can configure this behavior; see
"derby.storage.initialPages" in the Java DB Reference Manual.) After that, it grows eight
pages at a time.

The size of a row or column is not limited by the page size. Rows or columns that are
longer than the table's page size are automatically wrapped to overflow pages.

Database-wide properties

You can set many Derby properties as database-level properties. When set in this way,
they are stored in the database and "travel" with the database unless overridden by a
system property.

For more information, see Scope of properties and Setting database-wide properties.

Java DB Developer's Guide

26

Derby database limitations

Derby databases have a few limitations.

Indexes

Indexes are not supported for columns defined on CLOB, BLOB, LONG VARCHAR, and
XML data types.

If the length of the key columns in an index is larger than half the page size of the index,
creating an index on those key columns for the table fails. For existing indexes, an insert
of new rows for which the key columns are larger than half of the index page size causes
the insert to fail.

Avoid creating indexes on long columns. Create indexes on small columns that provide
a quick look-up to larger, unwieldy data in the row. You might not see performance
improvements if you index long columns. For information about indexes, see Tuning Java
DB.

System shutdowns

The system shuts down if the database log cannot allocate more disk space.

A "LogFull" error or some sort of IOException occurs in the derby.log file when
the system runs out of space. If the system has no more disk space to append to the
derby.log file, you might not see the error messages.

Connecting to databases

You connect to a database using a form of the Derby connection URL as an argument to
the DriverManager.getConnection call.

You specify a path to the database within this connection URL.

Connecting to databases within the system

The standard way to access databases is in the file system by specifying the path
to the database, either absolute or relative to the system directory. In a client/server
environment, this path is always on the server machine.

By default, you can connect to databases within the current system directory (see
Defining the system directory). To connect to databases within the current system, just
specify the database name on the connection URL. For example, if your system directory
contains a database called myDB, you can connect to that database with the following
connection URL:

jdbc:derby:myDB

The full call within a Java program would be:

Connection conn =DriverManager.getConnection("jdbc:derby:myDB");

Connecting to databases outside the system directory

You can also connect to databases in other directories (including subdirectories of the
system directory) by specifying a relative or absolute path name to identify the database.
The way you specify an absolute path is defined by the host operating system.

Using the connection URL as described here, you can connect to databases in more than
one directory at a time.

Two examples:

jdbc:derby:../otherDirectory/myDB

Java DB Developer's Guide

27

jdbc:derby:c:/otherDirectory/myDB

Note: Once connected, such a database becomes a part of the Derby system, even
though it is not in the system directory. This means that it takes on the system-wide
properties of the system and no other instance of Derby should access that database. It
is recommended that you connect to databases only in the system directory.
Conventions for specifying the database path

When accessing databases from the file system (instead of from classpath or a jar file),
any path that is not absolute is interpreted as relative to the system directory.

The path must do one of the following:

• refer to a previously created Derby database
• specify the create=true attribute

The path separator in the connection URL is / (forward slash), as in the standard file://
URL protocol.

You can specify only databases that are local to the machine on which the JVM
is running. NFS file systems on UNIX and remote shared files on Windows
(//machine/directory) are not guaranteed to work. Using derby.system.home and forward
slashes is recommended practice for platform independent applications.

If two different database name values, relative or absolute, refer to the same actual
directory, they are considered equivalent. This means that connections to a database
through its absolute path and its relative path are connections to the same database.
Within Derby, the name of the database is defined by the canonical path of its directory
from java.io.File.getCanonicalPath.

Derby automatically creates any intermediate directory that does not already exist when
creating a new database. If it cannot create the intermediate directory, the database
creation fails.

If the path to the database is ambiguous, i.e., potentially the same as that to a database
that is available on the classpath (see "Special Database Access"), use the directory:
subsubprotocol to specify the one in the file system. For example:

jdbc:derby:directory:myDB

Special database access

You can also access databases from the classpath or from a jar file (in the classpath or
not) as read-only databases.

Accessing databases from the classpath:

In most cases, you access databases from the file system. However, it is also possible to
access databases from the classpath. The databases can be archived into a jar or zip file
or left as is.

All such databases are read-only.

To access an unarchived database from the classpath, specify the name of the database
relative to the directory in the classpath. You can use the classpath subprotocol if such a
database is ambiguous within the directory system.

For example, for a database called sample in C:\derby\demo\databases, you can put the
C:\derby\demo\databases directory in the classpath and access sample like this:

jdbc:derby:/sample

The forward slash is required before sample to indicate that it is relative to
C:\derby\demo\databases directory.

Java DB Developer's Guide

28

If only C:\derby were in the class path, you could access sample (read-only) like this:

jdbc:derby:/demo/databases/sample

Accessing databases from a jar or zip file:

It is possible to access databases from a jar file. The jar file does not have to be on the
classpath.

Note: All such databases are read-only.

For example, suppose you have archived the database jarDB1 into a file called jar1.jar.
This archive is in the classpath before you start up Derby. You can access jarDB1 with
the following connection URL

jdbc:derby:/jarDB1

To access a database in a jar file that is not on the classpath, use the jar subprotocol.

For example, suppose you have archived the database jarDB2 into a file called jar2.jar.
This archive is not in the classpath. You can access jarDB2 by specifying the path to the
jar file along with the jar subsubprotocol, like this:

jdbc:derby:jar:(c:/derby/lib/jar2.jar)jarDB2

For complete instructions and examples of accessing databases in jar files, see
Accessing a read-only database in a zip/jar file.

Database connection examples

The examples in this section use the syntax of the connection URL for use in an
embedded environment.

This information also applies to the client connection URL in a client/server environment.
For reference information about client connection URLs, see "java.sql.Connection
interface" in the Java DB Reference Manual.

• jdbc:derby:db1

Open a connection to the database db1. db1 is a directory located in the system
directory.

• jdbc:derby:london/sales

Open a connection to the database london/sales. london is a subdirectory of the
system directory, and sales is a subdirectory of the directory london.

• jdbc:derby:/reference/phrases/french

Open a connection to the database /reference/phrases/french.

On a UNIX system, this would be the path of the directory. On a Windows system,
the path would be C:\reference\phrases\french if the current drive were C. If a jar file
storing databases were in the user's classpath, this could also be a path within the
jar file.

• jdbc:derby:a:/demo/sample

Open a connection to the database stored in the directory \demo\sample on drive A
(usually the floppy drive) on a Windows system.

• jdbc:derby:c:/databases/salesdb jdbc:derby:salesdb

These two connection URLs connect to the same database, salesdb, on a Windows
platform if the system directory of the Derby system is C:\databases.

• jdbc:derby:support/bugsdb;create=true

Java DB Developer's Guide

29

Create the database support/bugsdb in the system directory, automatically creating
the intermediate directory support if it does not exist.

• jdbc:derby:sample;shutdown=true

Shut down the sample database. (Authentication is not enabled, so no user
credentials are required.)

• jdbc:derby:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database.

• jdbc:derby:classpath:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database. The reason for using the subsubprotocol is that it might have the same
path as a database in the directory structure.

• jdbc:derby:jar:(C:/dbs.jar)products/boiledfood

Access the read-only database boiledfood in the products directory from the jar file
C:/dbs.jar.

• jdbc:derby:directory:myDB

Access myDB, which is in the system directory. The reason for using the
directory: subsubprotocol is that it might happen to have the same path as a
database in the classpath.

Working with the database connection URL attributes

You specify attributes on the Derby connection URL.

The examples in this section use the syntax of the connection URL for use in an
embedded environment. You can also specify these same attributes and values on the
client connection URL if you are using Derby as a database server. For more information,
see the Java DB Server and Administration Guide.

You can also set these attributes by passing a Properties object along with a connection
URL to DriverManager.getConnection when obtaining a connection; see
Specifying attributes in a properties object.

All attributes are optional.

For complete information about the attributes, see "Setting attributes for the database
connection URL" in the Java DB Reference Manual.

For detailed information about the connection URL syntax, see Derby JDBC database
connection URL.

Using the databaseName attribute

You can use a databaseName attribute on a database connection URL to specify the
name of the database to which you want to connect.

jdbc:derby:;databaseName=databaseName

You can access read-only databases in jar or zip files by specifying jar as the
subsubprotocol, like this:

jdbc:derby:jar:(pathToArchive)databasePathWithinArchive

Or, if the jar or zip file has been included in the classpath, like this:

jdbc:derby:/databasePathWithinArchive

Java DB Developer's Guide

30

Shutting down Derby or an individual database

Applications in an embedded environment shut down the Derby system by specifying
the shutdown=true attribute in the connection URL. To shut down the system, you do not
specify a database name, and you must not specify any other attribute.

jdbc:derby:;shutdown=true

A successful shutdown always results in an SQLException to indicate that Derby has
shut down and that there is no other exception.

You can also shut down an individual database if you specify the databaseName.
You can shut down the database of the current connection if you specify the default
connection instead of a database name(within an SQL statement).

// shutting down a database from your application
DriverManager.getConnection(
 "jdbc:derby:sample;shutdown=true");

If user authentication and SQL authorization are both enabled, only the database owner
can shut down the database.

// shutting down an authenticated database as database owner
DriverManager.getConnection(

 "jdbc:derby:securesample;user=joeowner;password=secret;shutdown=true");

Attention: It is good practice to close existing connections before shutting down the
system or database. Connections created before the shutdown will not be usable after
shutdown is performed. Attempting to access connections after shutdown may cause
errors including instances of NullPointerException or protocol violations.

Creating and accessing a database

You create a database by supplying a new database name in the connection URL and
specifying create=true.

Derby creates a new database inside a new subdirectory in the system directory. This
system directory has the same name as the new database. If you specify a partial path, it
is relative to the system directory. You can also specify an absolute path.

jdbc:derby:databaseName;create=true

For more details about create=true, see "create=true" in the Java DB Reference Manual.

Providing a user name and password

When user authentication is enabled, an application must provide a user
name and password. One way to do this is to use the user=userName and
password=userPassword connection URL attributes.

jdbc:derby:sample;user=jill;password=toFetchAPail

Creating a database with territory-based collation

By default, Derby uses Unicode codepoint collation. However, you can specify
territory-based collation when you create the database.

.

You can use the collation and territory attributes to specify territory-based
collation. This type of collation applies only to user-defined tables. The system tables use
the Unicode codepoint collation.

Java DB Developer's Guide

31

Restriction: The collation attribute can be specified only when you create a
database. You cannot specify this attribute on an existing database or when you upgrade
a database.

To create a database with territory-based collation:

1. Specify the language and country codes for the territory attribute, and the
TERRITORY_BASED value for the collation attribute when you create the
database.

For example:

jdbc:derby:MexicanDB;create=true;territory=es_MX;collation=TERRITORY_BASED

Encrypting a database when you create it

If your environment is configured properly, you can create your database as an encrypted
database (one in which the database is encrypted on disk). To do this, you use the
dataEncryption=true attribute to turn on encryption and the bootPassword=key
attribute or the encryptionKey attribute to specify a key for the encryption.

You can also specify an encryption provider and encryption algorithm other
than the defaults with the encryptionProvider=providerName and
encryptionAlgorithm=algorithm attributes.

jdbc:derby:encryptedDB;create=true;dataEncryption=true;
bootPassword=DBpassword

Creating an encrypted database with an external key

You can create a database and encrypt the database with an external key.

To create an encrypted database using an external key:

1. Use the encryptionKey attribute in the connection URL.

For example to create the database and encrypt the database encDB using an
external key, specify this URL:

jdbc:derby:encDB;create=true;dataEncryption=true;encryptionAlgorithm=DES/
CBC/NoPadding;encryptionKey=6162636465666768

Attention: If you lose the encryption key you will not be able to boot the database.
Booting an encrypted database

You must specify several attributes in the URL when you boot an encrypted database.
You must specify these attributes the first time that you connect to the database within a
JVM session, or after you shut the database down within the same JVM session.

To boot an existing encrypted database:

1. The attribute that you specify depends on how the database was originally
encrypted:

• If the database was encrypted using the bootPassword mechanism, specify
the bootPassword attribute. For example:

jdbc:derby:wombat;bootPassword=clo760uds2caPe
• If the database was encrypted using an external key, specify the

encryptionKey attribute. For example:

jdbc:derby:flintstone;encryptionAlgorithm=AES/CBC/NoPadding;
encryptionKey=c566bab9ee8b62a5ddb4d9229224c678

Java DB Developer's Guide

32

If the algorithm that was used when the database was created is not the
default algorithm, you must also specify the encryptionAlgorithm attribute. The
default encryption algorithm used by Derby is DES/CBC/NoPadding.

Specifying attributes in a properties object

Instead of specifying attributes on the connection URL, you can specify attributes
as properties in a Properties object that you pass as a second argument to the
DriverManager.getConnection method.

For example, to set the user name and password:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

Properties p = new Properties();

p.setProperty("user", "sa");
p.setProperty("password", "manager");
p.setProperty("create", "true");

Connection conn = DriverManager.getConnection(
 "jdbc:derby:mynewDB", p);

If you are running on JDK 6 or higher, you do not normally need to invoke
Class.forName(). In that environment, the EmbeddedDriver loads automatically.
The only exception to this rule is when you need to shut down Derby in the middle of your
application and then restart it. To restart Derby, create a new instance of the driver as
follows:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance();

Working with Derby properties
This section describes how to use Derby properties. For details on specific properties,
see the "Derby properties" section of the Java DB Reference Manual.

Properties overview

Derby lets you configure behavior or attributes of a system, a specific database, or a
specific conglomerate (a table or index) through the use of properties.

Examples of behavior or attributes that you can configure are:
• Whether to authorize users
• Page size of tables and indexes
• Where and whether to create an error log
• Which databases in the system to boot

Scope of properties
You use properties to configure a Derby system, database, or conglomerate.

• system-wide

Most properties can be set on a system-wide basis; that is, you set a property for
the entire system and all its databases and conglomerates, if this is applicable.
Some properties, such as error handling and automatic booting, can be configured
only in this way, since they apply to the entire system. (For information about the
Derby system, see Derby system.)

• database-wide

Some properties can also be set on a database-wide basis. That is, the property is
true for the selected database only and not for the other databases in the system
unless it is set individually within each of them.

Java DB Developer's Guide

33

For properties that affect conglomerates, changing the value of such properties affects
only conglomerates that are created after the change. Conglomerates created earlier are
unaffected.

Note: Database-wide properties are stored in the database and are simpler for
deployment, in the sense that they follow the database. Database-wide properties are
also recommended for security reasons when you use Derby built-in user authentication
(see Derby and Security). System-wide properties can be more practical during the
development process.
Persistence of properties

A database-wide property always has persistence. That is, its value is stored in the
database. Typically, it is in effect until you explicitly change the property or until you set a
system-wide property with precedence over database-wide properties (see Precedence
of properties).

To disable or turn off a database-wide property setting, set its value to null. This has
the effect of removing the property from the list of database properties and restoring the
system property setting, if there is one (and if derby.database.propertiesOnly has not
been set; see Protection of database-wide properties).

A system-wide property might have persistence, depending on how you set it. If you set it
programmatically, it persists only for the duration of the JVM of the application that set it.
If you set it in the derby.properties file, a property persists until:

• That value is changed and the system is rebooted
• The file is removed from the system and the system is rebooted
• The database is booted outside of that system

Precedence of properties
The search order for properties is:

1. System-wide properties set programmatically (as a command-line option to the JVM
when starting the application or within application code)

2. Database-wide properties
3. System-wide properties set in the derby.properties file

This means, for example, that system-wide properties set programmatically override
database-wide properties and system-wide properties set in the derby.properties file, and
that database-wide properties override system-wide properties set in the derby.properties
file.

Protection of database-wide properties:

There is one important exception to the search order for properties described above:
When you set the derby.database.propertiesOnly property to true, database-wide
properties cannot be overridden by system-wide properties.

This property ensures that a database's environment cannot be modified by the
environment in which it is booted. Any application running in an embedded environment
can set this property to true for security reasons.

See the "Derby properties" section of the Java DB Reference Manual for details on the
derby.database.propertiesOnly property.

Dynamic versus static properties

Most properties are dynamic; that means you can set them while Derby is running, and
their values change without requiring a reboot of Derby. In some cases, this change
takes place immediately; in some cases, it takes place at the next connection.

Some properties are static, which means changes to their values will not take effect while
Derby is running. You must restart or set them before (or while) starting Derby.

For more information, see Making dynamic or static changes to properties.

Java DB Developer's Guide

34

Setting Derby properties

This section covers the different ways of setting properties.

Setting system-wide properties

You can set system-wide properties programmatically (as a command-line option to
the JVM when starting the application or within application code) or in the text file
derby.properties.

Changing the system-wide properties programmatically:

You can set properties programmatically -- either in application code before booting the

Derby driver or as a command-line option to the Java(TM) Virtual Machine (JVM) when
booting the application that starts up Derby. When you set properties programmatically,
these properties persist only for the duration of the application. Properties set
programmatically are not written to the derby.properties file or made persistent in any
other way by Derby.

Note: Setting properties programmatically works only for the application that starts up
Derby; for example, for an application in an embedded environment or for the application
server that starts up a server product. It does not work for client applications connecting
to a server that is running.

You can set properties programmatically in the following ways:

• As a parameter to the JVM command line
• Using a Properties object within an application or statement

As a parameter to the JVM command line

You can set system-wide properties as parameters to the JVM command line when you
start up the application or framework in which Derby is embedded. To do so, you typically
use the -D option. For example:

java -Dderby.system.home=C:\home\Derby\
 -Dderby.storage.pageSize=8192 JDBCTest

Using a Properties object within an application or statement

In embedded mode, your application runs in the same JVM as Derby, so you can also
set system properties within an application using a Properties object before loading the
Derby JDBC driver. The following example sets derby.system.home on Windows.

Properties p = System.getProperties();
p.setProperty("derby.system.home", "C:\databases\sample");

Note: If you pass in a Properties object as an argument to the
DriverManager.getConnection call when connecting to a database, those properties are
used as database connection URL attributes, not as properties of the type discussed in
this section. For more information, see Connecting to databases and Working with the
database connection URL attributes as well as the Java DB Reference Manual.
Changing the system-wide properties by using the derby.properties file:

You can set persistent system-wide properties in a text file called derby.properties, which
must be placed in the directory specified by the derby.system.home property. There is
one derby.properties file per system, not one per database. The file must be created in
the system directory. In a client/server environment, that directory is on the server. (For
more information about a Derby system and the system directory, see Derby system.)

Derby does not:
• Provide this file

Java DB Developer's Guide

35

• Automatically create this file for you
• Automatically write any properties or values to this file

Instead, you must create, write, and edit this file yourself.

The file should be in the format created by the java.util.Properties.save method.

The following is the text of a sample properties file:

derby.infolog.append=true
derby.storage.pageSize=8192
derby.storage.pageReservedSpace=60

Properties set this way are persistent for the system until changed, until the file is
removed from the system, or until the system is booted in some other directory (in which
case Derby would be looking for derby.properties in that new directory). If a database is
removed from a system, system-wide properties do not "travel" with the database unless
explicitly set again.

Verifying system properties:

You can find out the value of a system property if you set it programmatically. You cannot
find out the value of a system property if you set it in the derby.properties file.

For example, if you set the value of the derby.storage.pageSize system-wide
property in your program or on the command line, the following code will retrieve its value
from the System Properties object:

Properties sprops = System.getProperties();
System.out.println("derby.storage.pageSize value: "
+ sprops.getProperty("derby.storage.pageSize"));

You can also use Java Management Extensions (JMX) technology to obtain system
information, including some settings that correspond to system properties. For
details, visit the wiki page http://wiki.apache.org/db-derby/DerbyJMX and refer
to the API documentation for the packages org.apache.derby.mbeans and
org.apache.derby.mbeans.drda. For information on JMX technology, see
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

Setting database-wide properties

Database-wide properties, which affect a single database, are stored within the database
itself. This allows different databases within a single Derby system to have different
properties and ensures that the properties are correctly retained when a database is
moved away from its original system or copied.

You should use database-wide properties wherever possible for ease of deployment and
for security.

You set and verify database-wide properties using system procedures within SQL
statements.

To set a property, you connect to the database, create a statement, and then use the
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY procedure, passing the name of the
property and the value.

To check the current value of a property, you connect to the database, create a
statement, and then use the SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY function,
passing in the name of the property.

If you specify an invalid value, Derby uses the default value for the property. (If you call
the SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY function, however, it displays the
invalid value.)

http://wiki.apache.org/db-derby/DerbyJMX
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Java DB Developer's Guide

36

See the Java DB Reference Manual for more information on how to use these system
functions and procedures.

Setting properties in a client/server environment

In a client/server environment, you must set the system properties for the server's
system. That means that when you are using the derby.properties file, the file exists in
the server's derby.system.home directory. Client applications can set database-wide
properties because they are set via SQL statements.

Table 2. Summary of ways to set properties

Type of property How you set it

System-wide • In derby.properties
• As a command-line option when starting the JVM

that holds the server or, if the server is started
from within a program, programmatically by the
program that hosts the server

Database-wide Using system procedures and functions in an SQL
statement

Making dynamic or static changes to properties
Note: Properties set in the derby.properties file and on the command line of the
application that boots Derby are always static, because Derby reads this file and those
parameters only at startup.
Only properties set in the following ways have the potential to be dynamic:

• As database-wide properties
• As system-wide properties via a Properties object in the application in which the

Derby engine is embedded

See the "Derby properties" section of the Java DB Reference Manual for information
about specific properties.

Properties case study

Derby allows you a lot of freedom in configuring your system. This freedom can be
confusing if you do not understand how properties work. You also have the option of
not setting any properties and instead using the Derby defaults, which are tuned for a
single-user embedded system.

Imagine the following scenario of an embedded environment:

Your system has a derby.properties file, a text file in the system directory, which you
have created and named system_directory. Your databases have also been created in
this directory. The properties file sets the following property:

derby.storage.pageSize=8192

You start up your application, being sure to set the derby.system.home property
appropriately:

java -Dderby.system.home=c:\system_directory MyApp

The command lines in this example assume that you are using a Windows system.

You then create a new table:

CREATE TABLE table1 (a INT, b VARCHAR(10))

Java DB Developer's Guide

37

Derby takes the page size of 8192 from the system-wide properties set in the
derby.properties file, since the property has not been set any other way.

You shut down and then restart your application, setting the value of
derby.storage.pageSize to 4096 programmatically, as a parameter to the JVM command
line:

java -Dderby.system.home=c:\system_directory
 -Dderby.storage.pageSize=4096 MyApp

CREATE TABLE anothertable (a INT, b VARCHAR(10))

The page size for the anothertable table will be 4096 bytes.

You establish a connection to the database and set the value of the page size for all new
tables to 32768 as a database-wide property:

CallableStatement cs =
 conn.prepareCall("CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(?, ?)");
cs.setString(1, "derby.storage.pageSize");
cs.setString(2, "32768");
cs.execute();
cs.close();

You then create a new table that automatically inherits the page size set by the property:

CREATE TABLE table2 (a INT, b VARCHAR(10))

The page size for the table2 table is 32768 bytes.

You shut down the application, then restart, this time forgetting to set the system-wide
property programmatically (as a command-line option to the JVM):

java -Dderby.system.home=c:\system_directory MyApp

You then create another table:

CREATE TABLE table4 (a INT, b VARCHAR(10))

Derby uses the persistent database-wide property of 32768 for this table, since the
database-wide property set in the previous session is persistent and overrides the
system-wide property set in the derby.properties file.

What you have is a situation in which three different tables each get a different page size,
even though the derby.properties file remained constant.

If you remove the derby.properties file from the system or remove the database from its
current location (forgetting to move the file with it), you could get yet another value for a
new table.

To avoid this situation, be consistent in the way you set properties.

Java DB Developer's Guide

38

Deploying Derby applications

Typically, once you have developed a Derby application and database, you package up
the application, the Derby libraries, and the database in some means for distribution to
your users. This process is called deployment.

This section discusses issues for deploying Derby applications and databases.

Deployment issues
This section discusses deployment options and details.

Embedded deployment application overview

In an embedded environment, Derby runs in the same JVM as the application.

The application can be a single-user application or a multi-user application server. In the
latter case, Derby runs embedded in the user-provided server framework, and any client
applications use user-provided connectivity or allow the application server to handle all
database interaction.

Figure 3. Derby embedded in a single-user Java application

Figure 4. Derby embedded in a multi-user Java application server

When a Derby database is embedded in a Java application, the database is dedicated
to that single application. If you deploy more than one copy of the application, each
application has its own copy of the database and Derby software. A Derby server
framework can work in multi-threaded, multi-connection mode and can even connect
to more than one database at a time. A server framework, such as the Derby Network

Java DB Developer's Guide

39

Server, can be used to manage multiple connections and handle network capabilities.
Some server framework solutions, such as WebSphere Application Server, provide
additional features such as web services and connection pooling. However, only one
server framework at a time can operate against a Derby database.

The Derby application accesses an embedded Derby database through the JDBC API.
To connect, an application makes a call to the local Derby JDBC driver. Accessing the
JDBC driver automatically starts the embedded Derby software. The calling application is
responsible for shutting down the embedded Derby database software.

Deploying Derby in an embedded environment

You can embed Derby in any Java application (single- or multi-user) by deploying the
following packages.

• The Derby library (derby.jar).
• The libraries for the application. You have the option of storing these libraries in the

database.
• The database or databases used by the application, in the context of their system

directory.

In the following figure, the top graphic shows the deployment of an application, where
the application, the Derby software for embedded use, the derby.properties file and
the database are four objects. The bottom graphic shows a simplified deployment by
reducing the number of objects to two by storing the application and the properties file in
the database.

Figure 5. Two approaches to deploying a Derby application in an embedded
environment.

Embedded systems and properties

Database-wide properties are stored in the database and are simpler for deployment,
while system-wide parameters might be easier for development.

Java DB Developer's Guide

40

• If you are setting any system-wide properties, see if they can be set as
database-wide properties instead.

• Are any properties being set in the derby.properties file? Some properties can only
be set on a system-wide basis. If so, deploy the entire system directory along with
the properties file. Deploy only those databases that you wish to include. Setting
properties programmatically can simplify this step- you will not have to worry about
deploying the system directory/properties file.

Extra steps are required for deploying an application and an embedded database on
read-only media.

Creating Derby databases for read-only use
You can create Derby databases for use on read-only media such as CD-ROMs.

Derby databases in zip or jar files are also read-only databases. Typically, read-only
databases are deployed with an application in an embedded environment.

Creating and preparing the database for read-only use

To create databases for use on read-only media, perform these steps.

1. Create and populate the database on read-write media.
2. Commit all transactions and shut down Derby in the prescribed manner. If you do

not shut down Derby in the prescribed manner, Derby will need to perform recovery
the next time the system boots. Derby cannot perform recovery on read-only media.

3. Delete the tmp directory if one was created within your database directory. If you
include this directory, Derby will attempt to delete it and will return errors when
attempting to boot a database on read-only media.

4. For the read-only database, set the property derby.storage.tempDirectory to a
writable location.

Derby needs to write to temporary files for large sorts required by such SQL
statements as ORDER BY, UNION, DISTINCT, and GROUP BY. For more
information about this property, see the Java DB Reference Manual.

derby.storage.tempDirectory=c:/temp/mytemp
5. Configure the database to send error messages to a writable file or to an output

stream.

For information on the derby.stream.error.file property, see the Java DB Reference
Manual.

derby.stream.error.file=c:/temp/mylog.LOG

Be sure to set these properties so that they are deployed with the database.

Deploying the database on the read-only media

To deploy the database on read-only media, perform the following steps.

1. Move the database directory to the read-only media, including the necessary
subdirectory directories (log and seg0) and the file service.properties.

2. Use the database as usual, except that you will not be able to insert or update any
data in the database or create or drop dictionary objects.

Transferring read-only databases to archive (jar or zip) files

Java DB Developer's Guide

41

Once a database has been created in Derby, it can be stored in a jar or zip file and
continue to be accessed by Derby in read-only mode.

This allows a read-only database to be distributed as a single file instead of as multiple
files within a directory and to be compressed. In fact, a jar or zip file can contain any
number of Derby databases and can also contain other information not related to Derby,
such as application data or code.

You cannot store the derby.properties file in a jar or zip file.

To create a jar or zip file containing one or more Derby databases:
1. Create a database for use on read-only media.
2. From the directory that contains the database folder, archive the database directory

and its contents. For example, for the database sales that lives in the system
directory C:\london, issue the command from london. Do not issue the command
from inside the database directory itself.

For example, archive the database folder and its contents using the JAR program from
the JDK. You can use any zip or jar tool to generate the archive.

This command archives the database directory sales and its contents into a compressed
jar file called dbs.jar.

cd C:\london
jar cMf C:\dbs.jar sales

You can add multiple databases with jar. For example, this command puts the sales
databases and the boiledfood database (in the subdirectory products) into the archive.

cd C:\london
jar cMf C:\dbs.jar sales products\boiledfood

The relative paths of the database in the jar need not match their original relative paths.
You can do this by allowing your archive tool to change the path, or by moving the
original databases before archiving them.

The archive can be compressed or uncompressed, or individual databases can be
uncompressed or compressed if your archive tool allows it. Compressed databases take
up a smaller amount of space on disk, depending on the data loaded, but are slower to
access.

Once the database is archived into the jar or zip file, it has no relationship to the original
database. The original database can continue to be modified if desired.

Accessing a read-only database in a zip/jar file

To access a database in a zip/jar, you specify the jar in the subsubprotocol.

jdbc:derby:jar:(pathToArchive)databasePathWithinArchive

The pathToArchive is the absolute path to the archive file. The
databasePathWithinArchive is the relative path to the database within the archive. For
example:

jdbc:derby:jar:(C:/dbs.jar)products/boiledfood
jdbc:derby:jar:(C:/dbs.jar)sales

If you have trouble finding a database within an archive, check the contents of the archive
using your archive tool. The databasePathWithinArchive must match the one in the
archive. You might find that the path in the archive has a leading slash, and thus the URL
would be:

jdbc:derby:jar:(C:/dbs.jar)/products/boiledfood

Java DB Developer's Guide

42

Databases in a jar or zip file are always opened read-only and there is currently no
support to allow updates of any type.

Accessing databases within a jar file using the classpath

Once an archive containing one or more Derby databases has been created it can be
placed in the classpath. This allows access to a database from within an application
without the application's knowing the path of the archive.

When jar or zip files are part of the classpath, you do not have to specify the jar
subsubprotocol to connect to them.

To access a database in a zip or jar file in the classpath:

1. Set the classpath to include the jar or zip file before starting up Derby:

CLASSPATH="C:\dbs.jar;%CLASSPATH%"
2. Connect to a database within the jar or zip file with one of the following connection

URLs:

Standard syntax:
jdbc:derby:/databasePathWithinArchive

Syntax with subsubprotocol:
jdbc:derby:classpath:/databasePathWithinArchive

For example:

jdbc:derby:/products/boiledfood
jdbc:derby:classpath:/products/boiledfood

Connecting to databases with ambiguous paths to databases in the file system

Use the basic connection URL syntax only if the database path specified does not also
point to a Derby database in the file system.

If this is the case, the connection attempt might fail or connect to the wrong database.
Use the form of the syntax with the subsubprotocol to distinguish between the databases.

For example:

jdbc:derby:classpath:/products/boiledfood

Connecting to databases when the path is ambiguous because of databases in the
classpath

To connect to a database in the file system when the connection URL that you would
use would be ambiguous with a database in the classpath, use the following form of the
connection URL.

jdbc:derby:directory:databasePathInFileSystem

For example,

jdbc:derby:directory:/products/boiledfood

Apart from the connection URL, databases in archives in the classpath behave just like
databases in archives accessed through the file system. However, databases in archives
are read-only.

Databases on read-only media and DatabaseMetaData

Databases on read-only media return true for DatabaseMetaData.isReadOnly.

Java DB Developer's Guide

43

Loading classes from a database
You can store application logic in a database and then load classes from the database.

Application logic, which can be used by SQL functions and procedures, includes
Java class files and other resources. Storing application code simplifies application
deployment, since it reduces the potential for problems with a user's classpath.

In an embedded environment, when application logic is stored in the database, Derby
can access classes loaded by the Derby class loader from stored jar files.

Class loading overview

You store application classes and resources by storing one or more jar files in the
database. Then your application can access classes loaded by Derby from the jar file and
does not need to be coded in a particular way. The only difference is the way in which
you invoke the application.

Here are the basic steps.

Create jar files for your application

Include any Java classes in a jar file that are intended for Derby class loading, except the
following classes:

• The standard Java packages (java.*, javax.*)

Derby does not prevent you from storing such a jar file in the database, but these
classes are never loaded from the jar file.

• The classes that are supplied with your Java environment (for example, sun.*)

A running Derby system can load classes from any number of jar files from any number
of schemas and databases.

Create jar files intended for Derby database class loading the same way you create a jar
file for inclusion in a user's classpath. For example, consider an application targeted at
travel agencies:

jar cf travelagent.jar travelagent/*.class.

Various IDEs have tools to generate a list of contents for a jar file based on your
application. If your application requires classes from other jar files, you have a choice:

• Extract the required third-party classes from their jar file and include only those
classes in your jar file.

Use this option when you need only a small subset of the classes in the third-party
jar file.

• Store the third-party jar file in the database.

Use this option when you need most or all of the classes in the third-party jar file,
since your application and third-party logic can be upgraded separately.

• Deploy the third-party jar file in the user's class path.

Use this option when the classes are already installed on a user's machine (for
example, Objectspace's JGL classes).

Add the jar file or files to the database

Use a set of procedures to install, replace, and remove jar files in a database.
When you install a jar file in a database, you give it a Derby jar name, which is an
SQL92Identifier.

Java DB Developer's Guide

44

Note: Once a jar file has been installed, you cannot modify any of the individual classes
or resources within the jar file. Instead, you must replace the entire jar file.
Jar file examples:

See the Java DB Tools and Utilities Guide for reference information about the utility and
complete syntax.

Installing jar files:

-- SQL statement
CALL sqlj.install_jar(
 'tours.jar', 'APP.Sample1', 0)

-- SQL statement
-- using a quoted identifier for the
-- Derby jar name
CALL sqlj.install_jar(
 'tours.jar', 'APP."Sample2"', 0)

Removing jar files:

-- SQL statement
CALL sqlj.remove_jar(
 'APP.Sample1', 0)

Replacing jar files:

-- SQL statement
CALL sqlj.replace_jar(
 'c:\myjarfiles\newtours.jar', 'APP.Sample1')

Enable database class loading with a property

Once you have added one or more jar files to a database, you must set the database jar
"classpath" by including the jar file or files in the derby.database.classpath property to
enable Derby to load classes from the jar files.

This property, which behaves like a class path, specifies the jar files to be searched for
classes and resources and the order in which they are searched. If Derby does not find a
needed class stored in the database, it can retrieve the class from the user's classpath.
(Derby first looks in the user's classpath before looking in the database.)

• Separate jar files with a colon (:).
• Use two-part names for the jar files (schema name and jar name). Set the property

as a database-level property for the database. The first time you set the property,
you must reboot to load the classes.

Example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.classpath',
 'APP.ToursLogic:APP.ACCOUNTINGLOGIC')

See "derby.database.classpath" in the Java DB Reference Manual for more information
about the property.

Note: Derby's class loader looks first in the user's classpath for any needed classes, and
then in the database. To ensure class loading with the database class loader, remove
classes from the classpath.
Code your applications

In your applications, you load the classes either by indirectly referencing them in the code
or by directly using java.lang.Class.forName.

Java DB Developer's Guide

45

You load resources the way you normally would, using the standard
java.lang.Class.getResourceAsStream, a mechanism that allows an application to access
resources defined in the classpath without knowing where or how they are stored.

You do not need to make any changes to the way code interacts with Derby and its JDBC
driver. An application can safely attempt to boot Derby, even though it is already running,
without any errors. Applications connect to Derby in the usual manner.

Note: The method getResource is not supported.

Dynamic changes to jar files or to the database jar classpath

When you store jar files in a single database and make those jar files available to that
database, it is possible to make changes to jar files or to change the database jar
"classpath" dynamically (without having to reboot).

That is, when you install or replace a jar file within an SQL statement or change the
database jar "classpath" (the derby.database.classpath property),Derby is able to load
the new classes right away without your having to reboot.

Requirements for dynamic changes

Certain conditions must be met for Derby to be able to load the new classes right away
without you having to reboot.

• You originally configured database-level class loading for the database correctly.
Turning on the database-level class loading property requires setting the
derby.database.classpath property with valid two-part names, then rebooting.

• If changes to the derby.database.classpath property are needed to reflect new jar
files, you change the property to a valid value.

If these requirements are not met, you will have to reboot to see the changes.

Notes on dynamic changes

When you are changing the derby.database.classpath property, all classes loaded from
database jar files are reloaded, even for a jar file that has not changed.

Remember that the user's classpath is searched first.

Any existing prepared statements will use the previously loaded classes unless they
require class loading, in which case they will fail with a ClassNotFound error.

Cached objects do not match objects created with newly loaded classes. For example,
an in-memory Customer object will not match a new Customer object if the Customer
class has been reloaded, and it will raise a ClassCastException.

Java DB Developer's Guide

46

Derby server-side programming

This section discusses special programming for Derby.

In particular, this section discusses how to program database-side JDBC routines,
triggers, and table functions.

Programming database-side JDBC routines
Methods invoked within an application are called application-side methods. Methods
invoked within Derby are called database-side routines.

An application-side method can be exactly the same as a database-side routine. The only
difference is where you invoke them. You write the method only once. Where you invoke
the method--within the application or within an SQL statement--determines whether it is
an "application-side" or a "database-side" method.

Database-side JDBC routines and nested connections

Most database-side JDBC routines need to share the same transaction space as the
statements that called them.

The reasons for this are:

• to avoid blocking and deadlocks
• to ensure that any updates done from within the routine are atomic with the outer

transaction

In order to use the same transaction, the routine must use the same connection as the
parent SQL statement in which the routine was executed. Connections re-used in this
way are called nested connections.

Use the connection URL jdbc:default:connection to re-use the current Connection.

The database donnection URL jdbc:default:connection allows a Java method to get the
Connection of the SQL statement that called it. This is the standard (SQL standard, Part
13, SQL Routines and Java) mechanism to obtain the nested connection object. The
method would get a Connection as follows:

Connection conn = DriverManager.getConnection(
 "jdbc:default:connection");

URL attributes are not supported as part of this connection URL. Any URL attributes
specified in a Properties object, user name, or password that are passed to a
java.sql.DriverManager.getConnection() call will be ignored.

Loading a JDBC driver in a database-side routine is not required.

Requirements for database-side JDBC routines using nested connections

In order to preserve transactional atomicity, database-side JDBC routines that use nested
connections have the following limitations.

• Can issue a commit or rollback only within a procedure (not a function).
• Cannot change the auto-commit connection attribute.
• Cannot modify the data in a table used by the parent statement that called the

routine, using INSERT, UPDATE, or DELETE. For example, if a SELECT statement
using the T table calls the changeTables procedure, changeTables cannot
modify data in the T table.

Java DB Developer's Guide

47

• Cannot drop a table used by the statement that called the routine.
• Cannot be in a class whose static initializer executes DDL statements.

In addition, the Connection object that represents the nested connection always has its
auto-commit mode set to false.

Database-side JDBC routines using non-nested connections

A database-side JDBC routine can create a new connection instead of using a nested
connection. Statements executed in the routine will be part of a different transaction, and
so can issue commits and rollbacks.

Such a routine can connect to a database different from the one to which the parent SQL
statement that called it is connected. The routine does not use the same transaction or
Connection. It establishes a new Connection and transaction.

Note: If database-side JDBC routines do not use nested connections, this means that
they are operating outside of the normal DBMS transaction control, so it is not good
practice to use them indiscriminately.
Invoking a procedure using the CALL command

If a procedure uses only IN parameters, Derby can execute the procedure by using the
SQL CALL command. A stored procedure with IN, OUT, or INOUT parameters can be
invoked from a client application by using a CallableStatement.

You can invoke the procedure in an SQL statement such as the following:

CALL MYPROC()

Note: You can roll back a CALL statement only if no commits or rollbacks occur within
the specified procedure.

You can also use the CALL command to execute a routine that returns a value, but you
will not be able to access the value.

Database-side JDBC routines and SQLExceptions

It is possible to code database-side routines, like application-side methods, to catch
SQLExceptions. SQLExceptions that are caught within a routine are hidden from the
calling application code.

When such SQLExceptions are of transaction severity (such as deadlocks), this "hiding"
of the exception causes unexpected problems.

This is because errors of transaction severity roll back work already done by a
transaction (not just the piece executed by the called method) and silently begin a new
transaction. When the method execution is complete, Derby detects that the outer
statement was invalidated by a deadlock and rolls back any work done in the new
transaction as well. This is the expected behavior, because all the statements in between
explicit commits should be treated atomically; the new transaction implicitly begun by
Derby's rollback was not intended by the application designer.

However, this is not the same behavior that would happen if the method were invoked in
the application. In that situation, Derby would roll back the work done by the transaction
and silently begin a new transaction. Work in the new transaction would not be rolled
back when the method returned. However, coding the application in that way means
that the transaction did not end where you expected it to and is probably a programming
mistake. Coding in this manner is not recommended.

A method that catches a deadlock exception and then continues is probably making a
mistake. Errors of transaction severity should be caught not by nested code, but only by

Java DB Developer's Guide

48

the outermost application code. That is the only way to ensure that transactions begin
and end where you expect them to.

Not all database vendors handle nested deadlocks the same way. For this and other
reasons, it is not possible to write portable SQL-invoking methods. However, it is possible
to write SQL-invoking methods that behave identically regardless of whether you invoke
them in the application or as a routine in the database.

In order to ensure identical application- and database-side handling of nested errors,
code try-catch blocks to check for the severity of exceptions as follows:

try {
 preparedStatement.execute();
} catch (SQLException se) {
 String SQLState = se.getSQLState();
 if (SQLState.equals("23505"))
 { correctDuplicateKey(); }
 else if (SQLState.equals("22003")) {
 correctArithmeticOverflow(); }
 else { throw se; }
}

Of course, users also have the choice of not wrapping SQL statements in try-catch blocks
within methods. In that case, SQLExceptions are caught higher up in their applications,
which is the desired behavior.

User-defined SQLExceptions

When the execution of a database-side method raises an error, Derby wraps that
exception in an SQLException with an SQLState of 38000.

You can avoid having Derby wrap the exception if:

• The exception is an SQLException
• The range of the SQLState is 38001-38999

(This conforms to the SQL99 standard.)

Programming trigger actions
Derby allows you to create triggers. When you create a trigger, you define an action or
set of actions that are executed when a database event occurs on a specified table. A
database event is a delete, insert, or update operation.

For example, if you define a trigger for a delete on a particular table, the trigger action is
executed whenever someone deletes a row or rows from the table.

The CREATE TRIGGER statement in the Java DB Reference Manual goes into detail of
the complete CREATE TRIGGER syntax. This section provides information on defining the
trigger action itself, which is only one aspect of creating triggers.

This section refers to the CREATE TRIGGER statement as the trigger actions.

Trigger action overview

A trigger action is a simple SQL statement.

For example:

CREATE TRIGGER . . .
DELETE FROM flightavailability
 WHERE flight_id IN (SELECT flight_id FROM flightavailability
 WHERE YEAR(flight_date) < 2005);)

Java DB Developer's Guide

49

A trigger action does have some limitations, though; for example, it cannot contain
dynamic parameters or alter the table on which the trigger is defined. See "TriggerAction"
in the Java DB Reference Manual for details.

Performing referential actions

Derby provides referential actions. Examples in this section are included to illustrate how
to write triggers.

You can choose to use standard SQL referential integrity to obtain this functionality,
rather than writing triggers. See the Java DB Reference Manual for more information on
referential integrity.

Accessing before and after rows

Many trigger actions need to access the values of the rows being changed.

Such trigger actions need to know one or both of the following:

• the "before" values of the rows being changed (their values before the database
event that caused the trigger to fire)

• the "after" values of the rows being changed (the values to which the database
event is setting them)

Derby provides transition variables and transition tables for a trigger action to access
these values. See "Referencing Old and New Values: The Referencing Clause" in the
Java DB Reference Manual.

Examples of trigger actions

The following trigger action copies a row from the flights table into the flight_history table
whenever any row gets inserted into flights and adds the comment "inserted from trig1" in
the status column of the flight_history table.

CREATE TRIGGER trig1
AFTER UPDATE ON flights
REFERENCING OLD AS UPDATEDROW
FOR EACH ROW MODE DB2SQL
INSERT INTO flights_history
VALUES (UPDATEDROW.FLIGHT_ID, UPDATEDROW.SEGMENT_NUMBER,
UPDATEDROW.ORIG_AIRPORT, UPDATEDROW.DEPART_TIME,
UPDATED ROW.DEST_AIRPORT, UPDATEDROW.ARRIVE_TIME,
UPDATEDROW.MEAL, UPDATEDROW.FLYING_TIME, UPDATEDROW.MILES,
UPDATEDROW.AIRCRAFT,'INSERTED FROM trig1');

Triggers and exceptions

Exceptions raised by triggers have a statement severity; they roll back the statement that
caused the trigger to fire.

This rule applies to nested triggers (triggers that are fired by other triggers). If a trigger
action raises an exception (and it is not caught), the transaction on the current connection
is rolled back to the point before the triggering event. For example, suppose Trigger A
causes Trigger B to fire. If Trigger B throws an exception, the current connection is rolled
back to the point before the statement in Trigger A that caused Trigger B to fire. Trigger
A is then free to catch the exception thrown by Trigger B and continue with its work. If
Trigger A does not throw an exception, the statement that caused Trigger A, as well as
any work done in Trigger A, continues until the transaction in the current connection is
either committed or rolled back. However, if Trigger A does not catch the exception from

Java DB Developer's Guide

50

Trigger B, it is as if Trigger A had thrown the exception. In that case, the statement that
caused Trigger A to fire is rolled back, along with any work done by both of the triggers.

Aborting statements and transactions

You might want a trigger action to be able to abort the triggering statement or even the
entire transaction.

Triggers that use the current connection are not permitted to commit or roll back the
connection, so how do you do that? The answer is: have the trigger throw an exception,
which is by default a statement-level exception (which rolls back the statement). The
application-side code that contains the statement that caused the trigger to fire can then
roll back the entire connection if desired. Programming triggers in this respect is no
different from programming any database-side JDBC method.

Programming Derby-style table functions
Derby lets you create table functions. Table functions are functions which package up
external data to look like Derby tables. The external data can be an XML file, a table in a
foreign database, a live data feed--in short, any information source that can be presented
as a JDBC ResultSet.

Derby-style table functions let you efficiently import foreign data into Derby tables. Table
functions let you join Derby tables with any of the following data sources:

• XML-formatted reports and logs
• Queries that run in foreign databases
• Streaming data from sensors
• RSS feeds

See "CREATE FUNCTION statement" in the Java DB Reference Manual for the
complete syntax needed to declare Derby-style table functions. The following topics
provide information on how to write Java methods which wrap foreign data sources inside
ResultSets.

Overview of Derby-style table functions

A Derby-style table function is a method which returns a JDBC ResultSet.

Most of the ResultSet methods can be written as stubs which simply raise exceptions.
However, the Derby-style table function must implement the following ResultSet
methods:

• next()
• close()
• wasNull()
• getXXX() - When invoking a Derby-style table function at runtime, Derby calls a

getXXX() method on each referenced column. The particular getXXX() method is
based on the column's data type as declared in the CREATE FUNCTION statement.
Preferred getXXX() methods for Derby-style table functions explains how Derby
selects an appropriate getXXX() method. However, nothing prevents application
code from calling other getXXX() methods on the ResultSet. The returned ResultSet
needs to implement the getXXX() methods which Derby will call as well as all
getXXX() methods which the application will call.

A Derby-style table function is materialized by a public static method which returns a
ResultSet:

public static ResultSet read() {...}

Java DB Developer's Guide

51

The public static method is then bound to a Derby function name:

CREATE FUNCTION externalEmployees
()
RETURNS TABLE
(
 employeeId INT,
 lastName VARCHAR(50),
 firstName VARCHAR(50),
 birthday DATE
)
LANGUAGE JAVA
PARAMETER STYLE DERBY_JDBC_RESULT_SET
READS SQL DATA
EXTERNAL NAME 'com.acme.hrSchema.EmployeeTable.read'

To invoke a table function, wrap it in a TABLE constructor in the FROM list of a query.
Note that the table alias (in this example "s") is a required part of the syntax:

INSERT INTO employees
 SELECT s.*
 FROM TABLE (externalEmployees()) s;

Preferred getXXX() methods for Derby-style table functions

While scanning a Derby-style table function, Derby calls a preferred getXXX() method
for each column, based on the column's data type. If Derby is running on a small device
platform and presenting the JSR 169 interface to clients, then the methods which Derby
calls are slightly different. This is because JSR 169 does not support BigDecimal.

The following table lists the preferred getXXX() method for each Derby data type.

Table 3. getXXX() Methods Called for Declared SQL Types

Column Type Declared by CREATE FUNCTION

getXXX()
Method Called
by Derby for
JDBC 3.0 and
4.0

getXXX()
Method Called
by Derby for
JSR 169

BIGINT getLong() Same

BLOB getBlob() Same

CHAR getString() Same

CHAR FOR BIT DATA getBytes() Same

CLOB getClob() Same

DATE getDate() Same

DECIMAL getBigDecimal() getString()

DOUBLE getDouble() Same

DOUBLE PRECISION getDouble() Same

FLOAT getDouble() Same

INTEGER getInt() Same

LONG VARCHAR getString() Same

LONG VARCHAR FOR BIT DATA getBytes() Same

Java DB Developer's Guide

52

Column Type Declared by CREATE FUNCTION

getXXX()
Method Called
by Derby for
JDBC 3.0 and
4.0

getXXX()
Method Called
by Derby for
JSR 169

NUMERIC getBigDecimal() getString()

REAL getFloat() Same

SMALLINT getShort() Same

TIME getTime() Same

TIMESTAMP getTimestamp() Same

VARCHAR getString() Same

VARCHAR FOR BIT DATA getBytes() Same

XML Not supported Not supported

Example Derby-style table function

The following simple table function selects rows from a foreign database.

package com.acme.hrSchema;

import java.sql.*;

/**
 * Sample Table Function for reading the employee table in an
 * external database.
 */
public class EmployeeTable
{
 public static ResultSet read()
 throws SQLException
 {
 Connection conn = getConnection();
 PreparedStatement ps = conn.prepareStatement("select * from
 hrSchema.EmployeeTable");

 return ps.executeQuery();
 }

 protected static Connection getConnection()
 throws SQLException
 {
 String EXTERNAL_DRIVER = "com.mysql.jdbc.Driver";

 try { Class.forName(EXTERNAL_DRIVER); }
 catch (ClassNotFoundException e) { throw new SQLException("Could
 not find class " + EXTERNAL_DRIVER); }

 Connection conn = DriverManager.getConnection
 ("jdbc:mysql://localhost/hr?user=root&password=mysql-passwd"
);

 return conn;
 }
}

Optimizer support for Derby-style table functions

Java DB Developer's Guide

53

This topic explains how to fine-tune the Derby optimizer's decision about where to place a
table function in the join order.

By default, the Derby optimizer makes the following assumptions about a table function:

• Expensive - It is expensive to create and loop through the rows of the table
function. This makes it likely that the optimizer will place the table function in an
outer slot of the join order so that it will not be looped through often.

• Repeatable - The table function can be instantiated multiple times with the same
results. This is probably true for most table functions. However, some table
functions may open read-once streams. If the optimizer knows that a table function
is repeatable, then the optimizer can place the table function in an inner slot where
the function can be invoked multiple times. If a table function is not repeatable, then
the optimizer must either place it in the outermost slot or invoke the function once
and store its contents in a temporary table.

The user can override this optimizer behavior by giving the optimizer more information.
Here's how to do this:

• No-arg constructor - The table function's class must have a public constructor
whose signature has no arguments.

• VTICosting - The class must also implement org.apache.derby.vti.VTICosting. This
involves implementing the following methods as described in Measuring the cost of
Derby-style table functions and Example VTICosting implementation:

• getEstimatedCostPerInstantiation() - This method estimates the cost of
invoking the table function and looping through its rows. The returned value
adds together two estimates:

• Empty table - This is the cost of invoking the table function, even if it
contains 0 rows. See the description of variable E in Measuring the cost
of Derby-style table functions.

• Scanning - This is the cost of looping through all of the rows returned by
the table function. See the calculation of P*N in Measuring the cost of
Derby-style table functions.

• getEstimatedRowCount() - This guesses the number of rows returned by
invoking the table function.

• supportsMultipleInstantiations() - This returns false if the table function returns
different results when invoked more than once.

For more information, see:

Measuring the cost of Derby-style table functions

This topic shows how to measure the cost of a Derby-style table function.

The following formula describes how to estimate the value returned by
VTICosting.getEstimatedCostPerInstantiation():

C = I * A

where

• C = The estimated Cost for creating and running the table function. That is, the
value returned by VTICosting.getEstimatedCostPerInstantiation(). In general, Cost
is a measure of time in milliseconds.

• I = The optimizer's Imprecision. A measure of how skewed the optimizer's estimates
tend to be in your particular environment. See below for instructions on how to
estimate this Imprecision.

• A = The Actual time in milliseconds which it takes to create and run this table
function.

Calculating the optimizer's imprecision

Java DB Developer's Guide

54

We treat optimizer Imprecision as a constant across the runtime environment. The
following formula describes it:

I = O / T

where

• O = The Optimizer's estimated cost for a plan.
• T = The Total runtime in milliseconds for the plan.

To estimate these values, turn on Derby statistics collection and run the following
experiment several times, averaging the results:

• Select = Select all of the rows from a big table.
• Record = In the statistics output, look for the ResultSet which represents the table

scan. That scan has a field labelled "optimizer estimated cost". That's O. Now look
for the fields in that ResultSet's statistics labelled "constructor time", "open time",
"next time", and "close time". Add up all of those fields. That total is T.

For example:

MAXIMUMDISPLAYWIDTH 7000;

CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
CALL SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1);

select * from T;

values SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS();

Calculating the actual runtime cost of a table function

The following formula explains how to compute the Actual runtime cost for the table
function:

A = (P * N) + E

where

• P = The runtime spent Per row (in milliseconds).
• N = The Number of rows in the table function.
• E = The time spent creating an Empty instance of the table function which has no

rows in it. Usually, P * N dwarfs E. That is, the table function instantiation cost is
very small compared to the actual cost of looping through the rows. However, for
some table functions, E may be significant and may dominate the table function's
cost when N is small.

You may know that E is basically 0. If so, you can skip this step. Otherwise, to estimate
E, turn on Derby statistics collection and run the following experiment several times,
averaging the results:

• Short-circuit = Short-circuit the next() method of the ResultSet returned by your
Derby-style Table Function so that it returns false the first time it is called. This
makes it appear that the ResultSet has no rows.

• Select = Select all of the rows from the table function.
• Record = In the statistics output, look for the VTIResultSet which represents the

table function scan. Add up the values of the fields in that VTIResultSet's statistics
labelled "constructor time", "open time", "next time", and "close time". That total is E.

To estimate P, turn on Derby statistics collection and run the following experiment several
times, averaging the results:

• Select = Select all of the rows from the table function.

Java DB Developer's Guide

55

• Record = In the statistics output, look for the VTIResultSet which represents the
table function scan. Add up the values of the fields in that VTIResultSet's statistics
labelled "constructor time", "open time", "next time", and "close time". Subtract E
from the result. Now divide by the value of the field "Rows seen". The result is P.

Computing the value returned by getEstimatedCostPerInstantiation()

Putting all of this together, the following formula describes the value returned by your
table function's VTICosting.getEstimatedCostPerInstantiation() method.

C = O/T * [(P * N) + E]

Example VTICosting implementation

Once you have measured your table function's cost, you can write the VTICosting
methods.

Optimizer fine-tuning can be added to the EmployeeTable table function shown before in
Example Derby-style table function:

package com.acme.hrSchema;

import java.io.Serializable;
import java.sql.*;

import org.apache.derby.vti.VTICosting;
import org.apache.derby.vti.VTIEnvironment;

/**
 * Tuned table function.
 */
public class TunedEmployeeTable extends EmployeeTable implements
 VTICosting
{
 public TunedEmployeeTable() {}

 public double getEstimatedRowCount(VTIEnvironment optimizerState)
 throws SQLException
 {
 return getRowCount(optimizerState);
 }

 public double getEstimatedCostPerInstantiation(VTIEnvironment
 optimizerState) throws SQLException
 {
 double I = 100.0; // optimizer imprecision
 double P = 10.0; // cost per row in milliseconds
 double E = 0.0; // cost of instantiating the external
 ResultSet
 double N = getRowCount(optimizerState);

 return I * ((P * N) + E);
 }

 public boolean supportsMultipleInstantiations(VTIEnvironment
 optimizerState) throws SQLException
 {
 return true;
 }

 //
//////

 private double getRowCount(VTIEnvironment optimizerState)
 throws SQLException
 {
 String ROW_COUNT_KEY = "rowCountKey";

Java DB Developer's Guide

56

 Double estimatedRowCount = (Double) getSharedState(
 optimizerState, ROW_COUNT_KEY);

 if (estimatedRowCount == null)
 {
 Connection conn = getConnection();
 PreparedStatement ps = conn.prepareStatement("select
 count(*) from hrSchema.EmployeeTable");
 ResultSet rs = ps.executeQuery();

 rs.next();
 estimatedRowCount = new Double(rs.getDouble(1));

 setSharedState(optimizerState, ROW_COUNT_KEY,
 estimatedRowCount);

 rs.close();
 ps.close();
 conn.close();
 }

 return estimatedRowCount.doubleValue();
 }

 private Serializable getSharedState(VTIEnvironment optimizerState,
 String key)
 { return (Serializable) optimizerState.getSharedState(key); }
 private void setSharedState(VTIEnvironment optimizerState, String
 key, Serializable value)
 { optimizerState.setSharedState(key, value); }
}

Java DB Developer's Guide

57

Controlling Derby application behavior

This section looks at some advanced Derby application concepts.

The JDBC connection and transaction model
Session and transaction capabilities for SQL are handled through JDBC routines, not by
SQL commands.

JDBC defines a system session and transaction model for database access. A session
is the duration of one connection to the database and is handled by a JDBC Connection
object.

Connections

A Connection object represents a connection with a database.

Within the scope of one Connection, you access only a single Derby database.
(Database-side JDBC routines can allow you to access more than one database in
some circumstances.) A single application might allow one or more Connections to
Derby, either to a single database or to many different databases, provided that all the
databases are within the same system.

With DriverManager, you use the connection URL as an argument to get the
getConnection method to specify which database to connect to and other details.

The following example shows an application establishing three separate connections to
two different databases in the current system.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:sample");
System.out.println("Connected to database sample");
conn.setAutoCommit(false);
Connection conn2 = DriverManager.getConnection(
 "jdbc:derby:newDB;create=true");
System.out.println("Created AND connected to newDB");
conn2.setAutoCommit(false);
Connection conn3 = DriverManager.getConnection(
 "jdbc:derby:newDB");
System.out.println("Got second connection to newDB");
conn3.setAutoCommit(false);

A Connection object has no association with any specific thread; during its lifetime, any
number of threads might have access to it, as controlled by the application.

Statements

To execute SQL statements against a database, an application uses
Statements (java.sql.Statement) and PreparedStatements
(java.sql.PreparedStatement), or CallableStatements
(java.sql.CallableStatement) for stored procedures.

Because PreparedStatement extends Statement and CallableStatement extends
PreparedStatement, this section refers to both as Statements. Statements are obtained
from and are associated with a particular Connection.

ResultSets and Cursors

Executing a Statement that returns values gives a ResultSet
(java.sql.ResultSet), allowing the application to obtain the results of the statement.

Java DB Developer's Guide

58

Only one ResultSet can be open for a particular Statement at any time, as per the
JDBC specification.

Thus, executing a Statement automatically closes any open ResultSet generated by an
earlier execution of that Statement.

For this reason, you must use a different Statement to update a cursor (a named
ResultSet) from the one used to generate the cursor.

The names of open cursors must be unique within a Connection.

Nested connections

SQL statements can include routine invocations. If these routines interact with the
database, they must use a Connection.

Transactions

A transaction is a set of one or more SQL statements that make up a logical unit of work
that you can either commit or roll back and that will be recovered in the event of a system
failure.

All the statements in the transaction are atomic. A transaction is associated with a
single Connection object (and database). A transaction cannot span Connections (or
databases).

Derby permits schema and data manipulation statements (DML) to be intermixed within
a single transaction. If you create a table in one transaction, you can also insert into it
in that same transaction. A schema manipulation statement (DDL) is not automatically
committed when it is performed, but participates in the transaction within which it is
issued. Because DDL requires exclusive locks on system tables, keep transactions that
involve DDL short.

Transactions when auto-commit is disabled

When auto-commit is disabled, you use a Connection object's commit and rollback
methods to commit or roll back a transaction.

The commit method makes permanent the changes resulting from the transaction
and releases locks. The rollback method undoes all the changes resulting from the
transaction and releases locks. A transaction encompasses all the SQL statements
executed against a single Connection object since the last commit or rollback.

You do not need to explicitly begin a transaction. You implicitly end one transaction and
begin a new one after disabling auto-commit, changing the isolation level, or after calling
commit or rollback.

Committing a transaction also closes all ResultSet objects excluding the ResultSet
objects associated with cursors with holdability true. The default holdability of the
cursors is true and ResultSet objects associated with them need to be closed
explicitly. A commit will not close such ResultSet objects. It also releases any database
locks currently held by the Connection, whether or not these objects were created in
different threads.

Using auto-commit

A new connection to a Derby database is in auto-commit mode by default, as specified by
the JDBC standard.

Auto-commit mode means that when a statement is completed, the method commit is
called on that statement automatically. Auto-commit in effect makes every SQL statement
a transaction. The commit occurs when the statement completes or the next statement
is executed, whichever comes first. In the case of a statement returning a ResultSet,

Java DB Developer's Guide

59

the statement completes when the last row of the ResultSet has been retrieved or the
ResultSet has been closed explicitly.

Some applications might prefer to work with Derby in auto-commit mode; some might
prefer to work with auto-commit turned off. You should be aware of the implications of
using either model.

You should be aware of the following when you use auto-commit:

• Cursors

You cannot use auto-commit if you do any positioned updates or deletes (that is, an
update or delete statement with a WHERE CURRENT OF clause) on cursors which
have the ResultSet.CLOSE_CURSORS_AT_COMMIT holdability value set.

Auto-commit automatically closes cursors that are explicitly opened with the
ResultSet.CLOSE_CURSORS_AT_COMMIT value, when you do any in-place
updates or deletes.

An updatable cursor declared to be held across commit (this is the default value)
can execute updates and issue multiple commits before closing the cursor. After an
explicit or implicit commit, a holdable forward-only cursor must be repositioned with
a call to the next method before it can accessed again. In this state, the only other
valid operation besides calling next is calling close.

• Database-side JDBC routines (routines using nested connections)

You cannot execute functions within SQL statements if those functions perform a
commit or rollback on the current connection. Since in auto-commit mode all SQL
statements are implicitly committed, Derby turns off auto-commit during execution of
database-side routines and turns it back on when the statement completes.

Routines that use nested connections are not permitted to turn auto-commit on or
off.

• Table-level locking and the SERIALIZABLE isolation level

When an application uses table-level locking and the SERIALIZABLE isolation level,
all statements that access tables hold at least shared table locks. Shared locks
prevent other transactions that update data from accessing the table. A transaction
holds a lock on a table until the transaction commits. So even a SELECT statement
holds a shared lock on a table until its connection commits and a new transaction
begins.

Table 4. Summary of Application Behavior with Auto-Commit On or Off

Topic Auto-Commit On Auto-Commit Off

Transactions Each statement
is a separate
transaction.

Commit() or
rollback() completes
a transaction.

Database-side JDBC routines
(routines that use nested connections)

Auto-commit is
turned off.

Works (no explicit
commits or
rollbacks are
allowed).

Updatable cursors Works for holdable
cursors; does
not work for
non-holdable
cursors.

Works.

Works.

Java DB Developer's Guide

60

Topic Auto-Commit On Auto-Commit Off

Multiple connections accessing the
same data

Works. Lower
concurrency when
applications use
SERIALIZABLE
isolation mode and
table-level locking.

Updatable ResultSets Works. Works.

Savepoints Does not work. Works.

Turning off auto-commit

You can disable auto-commit with the Connection class's setAutoCommit method.

conn.setAutoCommit(false);

Explicitly closing Statements, ResultSets, and Connections

You should explicitly close Statements, ResultSets, and Connections when you no
longer need them.

Connections to Derby are resources external to an application, and the garbage collector
will not close them automatically.

For example, close a Statement object using its close method; close a Connection
object using its close method. If auto-commit is disabled, active transactions need to be
explicitly committed or rolled back before closing the connection

Statement versus transaction runtime rollback

When an SQL statement generates an exception, this exception results in a runtime
rollback. A runtime rollback is a system-generated rollback of a statement or transaction
by Derby, as opposed to an explicit rollback call from your application.

Extremely severe exceptions, such as disk-full errors, shut down the system, and the
transaction is rolled back when the database is next booted. Severe exceptions, such as
deadlock, cause transaction rollback; Derby rolls back all changes since the beginning
of the transaction and implicitly begins a new transaction. Less severe exceptions, such
as syntax errors, result in statement rollback; Derby rolls back only changes made by the
statement that caused the error. The application developer can insert code to explicitly
roll back the entire transaction if desired.

Derby supports partial rollback through the use of savepoints. See Using savepoints for
more information.

Using savepoints

The Savepoint interface contains methods to set, release, or roll back a transaction to
designated savepoints. Once a savepoint has been set, the transaction can be rolled
back to that savepoint without affecting preceding work. Savepoints provide finer-grained
control of transactions by marking intermediate points within a transaction.

Setting and rolling back to a savepoint

The Connection.setSavepoint method sets a savepoint within the current transaction. The
Connection.rollback method is overloaded to take a savepoint argument.

The code example below inserts a row into a table, sets the savepoint svpt1, and then
inserts a second row. When the transaction is later rolled back to svpt1, the second
insertion is undone, but the first insertion remains intact. In other words, when the
transaction is committed, only the row containing '1' will be added to TABLE1.

Java DB Developer's Guide

61

conn.setAutoCommit(false); // Autocommit must be off to use savepoints.
Statement stmt = conn.createStatement();
int rows = stmt.executeUpdate("INSERT INTO TABLE1 (COL1) VALUES(1)");
// set savepoint
Savepoint svpt1 = conn.setSavepoint("S1");
rows = stmt.executeUpdate("INSERT INTO TABLE1 (COL1) VALUES (2)");
...
conn.rollback(svpt1);
...
conn.commit();

Releasing a savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a parameter and
removes it from the current transaction. Once a savepoint has been released, attempting
to reference it in a rollback operation will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released and
become invalid when the transaction is committed or when the entire transaction is rolled
back.

Rolling a transaction back to a savepoint automatically releases and makes invalid any
other savepoints created after the savepoint in question.

Rules for savepoints

The savepoint cannot be set within a batch of statements to enable partial recovery. If a
savepoint is set any time before the method executeBatch is called, it is set before any of
the statements that have been added to the batch are executed.

A savepoint can be reused after it has been released explicitly (by issuing a release of
the savepoint) or implicitly (by issuing a connection commit/rollback to that savepoint or
to a savepoint declared earlier than that savepoint).

It is possible to nest savepoints, but only in an embedded environment.

Result set and cursor mechanisms
A result set maintains a cursor, which points to its current row of data. It can be used to
step through and process the rows one by one.

In Derby, any SELECT statement generates a cursor which can be controlled by a
java.sql.ResultSet object. Derby does not support SQL-92's DECLARE CURSOR
language construct to create cursors, however Derby supports positioned deletes and
positioned updates of updatable cursors.

Simple non-updatable result sets

This example is an excerpt from a sample JDBC application that generates a result set
with a simple SELECT statement and then processes the rows.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:sample");
Statement s = conn.createStatement();
s.execute("set schema 'SAMP'");
//note that autocommit is on--it is on by default in JDBC
ResultSet rs = s.executeQuery(
 "SELECT empno, firstnme, lastname, salary, bonus, comm "
 + "FROM samp.employee");
/** a standard JDBC ResultSet. It maintains a
 * cursor that points to the current row of data. The cursor
 * moves down one row each time the method next() is called.
 * You can scroll one way only--forward--with the next()
 * method. When auto-commit is on, after you reach the

Java DB Developer's Guide

62

 * last row the statement is considered completed
 * and the transaction is committed.
 */
System.out.println("last name" + "," + "first name" + ": earnings");
/* here we are scrolling through the result set
with the next() method.*/
while (rs.next()) {
 // processing the rows
 String firstnme = rs.getString("FIRSTNME");
 String lastName = rs.getString("LASTNAME");
 BigDecimal salary = rs.getBigDecimal("SALARY");
 BigDecimal bonus = rs.getBigDecimal("BONUS");
 BigDecimal comm = rs.getBigDecimal("COMM");
 System.out.println(lastName + ", " + firstnme + ": "
 + (salary.add(bonus.add(comm))));
}
rs.close();
// once we've iterated through the last row,
// the transaction commits automatically and releases
//shared locks
s.close();

Updatable result sets

Updatable result sets in Derby can be updated by using result set update methods
(updateRow(),deleteRow() and insertRow()), or by using positioned update or
delete queries.

Both scrollable and non-scrollable result sets can be updatable in Derby.

If the query which was executed to create the result set is not updatable, Derby will
downgrade the concurrency mode to ResultSet.CONCUR_READ_ONLY, and add a
warning about this on the ResultSet. The compilation of the query fails if the result set
cannot be updatable, and contains a FOR UPDATE clause.

Positioned updates and deletes can be performed if the query contains FOR UPDATE or if
the concurrency mode for the result set is ResultSet.CONCUR_UPDATABLE.

To use the result set update methods, the concurrency mode for the result set must be
ResultSet.CONCUR_UPDATABLE. The query does not need to contain FOR UPDATE to
use these methods.

Updatable cursors lock the current row with an update lock when positioned on the row,
regardless of isolation level. Therefore, to avoid excessive locking of rows, only use
concurrency mode ResultSet.CONCUR_UPDATABLE or the FOR UPDATE clause when
you actually need to update the rows. For more information about locking, see Types and
scope of locks in Derby systems.

Requirements for updatable result sets

Only specific SELECT statements- simple accesses of a single table-allow you to update
or delete rows as you step through them.

For more information, see "SELECT statement" and "FOR UPDATE clause" in the Java
DB Reference Manual.

Forward only updatable result sets

A forward only updatable result set maintains a cursor which can only move in one
direction (forward), and also update rows.

To create a forward only updatable result set, the statement has to be
created with concurrency mode ResultSet.CONCUR_UPDATABLE and type
ResultSet.TYPE_FORWARD_ONLY.
Note: The default type is ResultSet.TYPE_FORWARD_ONLY.

Java DB Developer's Guide

63

Example of using ResultSet.updateXXX() + ResultSet.updateRow() to update
a row:

 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 while (uprs.next()) {
 int newBonus = uprs.getInt("BONUS") + 100;
 uprs.updateInt("BONUS", newBonus);
 uprs.updateRow();
 }

Example of using ResultSet.deleteRow() to delete a row:

 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 while (uprs.next()) {
 if (uprs.getInt("WORKDEPT")==300) {
 uprs.deleteRow();
 }
 }

Visibility of changes
• After an update or delete is made on a forward only result set, the result set's

cursor is no longer on the row just updated or deleted, but immediately before
the next row in the result set (it is necessary to move to the next row before
any further row operations are allowed). This means that changes made by
ResultSet.updateRow() and ResultSet.deleteRow() are never visible.

• If a row has been inserted, i.e using ResultSet.insertRow() it may be visible in
a forward only result set.

Conflicting operations

The current row of the result set cannot be changed by other transactions, since it will
be locked with an update lock. Result sets held open after a commit have to move to the
next row before allowing any operations on it.

Some conflicts may prevent the result set from doing updates/deletes:
• If the current row is deleted by a statement in the same transaction, calls to
ResultSet.updateRow() will cause an exception, since the cursor is no longer
positioned on a valid row.

Scrollable updatable result sets

A scrollable updatable result set maintains a cursor which can both scroll and update
rows.

Derby only supports scrollable insensitive result sets. To create a scrollable
insensitive result set which is updatable, the statement has to be created
with concurrency mode ResultSet.CONCUR_UPDATABLE and type
ResultSet.TYPE_SCROLL_INSENSITIVE.

Example of using result set update methods to update a row:

 Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

Java DB Developer's Guide

64

 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 uprs.absolute(5); // update the fifth row
 int newBonus = uprs.getInt("BONUS") + 100;
 uprs.updateInt("BONUS", newBonus);
 uprs.updateRow();

Example of using ResultSet.deleteRow() to delete a row:

 Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 uprs.last();
 uprs.relative(-5); // moves to the 5th from the last row
 uprs.deleteRow();

Visibility of changes
• Changes caused by other statements, triggers and other transactions (others) are

considered as other changes, and are not visible in scrollable insensitive result sets.
• Own updates and deletes are visible in Derby's scrollable insensitive result sets.

Note: Derby handles changes made using positioned updates and deletes as own
changes, so when made via a result set's cursor such changes are also visible in
that result set.

• Rows inserted to the table may become visible in the result set.
• ResultSet.rowDeleted() returns true if the row has been deleted using

the cursor or result set. It does not detect deletes made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to delete the row.

• ResultSet.rowUpdated() returns true if the row has been updated using
the cursor or result set. It does not detect updates made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to update the row.

• Note: Both ResultSet.rowUpdated() and ResultSet.rowDeleted() return
true if the row first is updated and later deleted.

Please be aware that even if changes caused by others are not visible in the result set,
SQL operations, including positioned updates, which access the current row will read and
use the row data as it is in the database, not as it is reflected in the result set.

Conflicting operations

A conflict may occur in scrollable insensitive result sets if a row is updated/deleted by
another committed transaction, or if a row is updated by another statement in the same
transaction. The row which the cursor is positioned on is locked, however once it moves
to another row, the lock may be released depending on transaction isolation level. This
means that rows in the scrollable insensitive result set may have been updated/deleted
by other transactions after they were fetched.

Since the result set is insensitive, it will not detect the changes made by others. When
doing updates using the result set, conflicting changes on the columns being changed will
be overwritten.

Some conflicts may prevent the result set from doing updates/deletes:

Java DB Developer's Guide

65

• The row has been deleted after it was read into the result set: Scrollable insensitive
result sets will give a warning with SQLState 01001 .

• The table has been compressed: Scrollable insensitive result sets will give a
warning with SQLState 01001. A compress conflict may happen if the cursor is
held over a commit. This is because the table intent lock is released on commit, and
not reclaimed until the cursor moves to another row.

To avoid conflicts with other transactions, you may increase the transaction isolation
level to repeatable read or serializable. This will make the transaction hold locks on the
rows which have been read until it commits.
Note: When you use holdable result sets, be aware that the locks will be released on
commit, and conflicts may occur regardless of isolation level. You should probably avoid
using holdable result sets if your application relies on transactional behavior for the result
set.
Inserting rows with updatable result sets

Updatable result set can be used to insert rows to the table, by using
ResultSet.insertRow().

When inserting a row, each column in the insert row that does not allow null as a value
and does not have a default value must be given a value using the appropriate update
method. If the inserted row satisfies the query predicate, it may become visible in the
result set.

Example of using ResultSet.insertRow() to insert a row:

 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT firstname, lastname, workdept, bonus " +
 "FROM employee");
 uprs.moveToInsertRow();
 uprs.updateString("FIRSTNAME", "Andreas");
 uprs.updateString("LASTNAME", "Korneliussen");
 uprs.updateInt("WORKDEPT", 123);
 uprs.insertRow();
 uprs.moveToCurrentRow();

Naming or accessing the name of a cursor

There is no SQL language command to assign a name to a cursor. You can use
the JDBC setCursorName method to assign a name to a ResultSet that allows
positioned updates and deletes.

You assign a name to a ResultSet with the setCursorName method of the
Statement interface. You assign the name to a cursor before executing the Statement
that will generate it.

Statement s3 = conn.createStatement();
// name the statement so we can reference the result set
// it generates
s3.setCursorName("UPDATABLESTATEMENT");
// we will be able to use the following statement later
// to access the current row of the cursor
// a result set needs to be obtained prior to using the
// WHERE CURRENT syntax
ResultSet rs = s3.executeQuery("select * from
 FlightBookings FOR UPDATE of number_seats");
PreparedStatement ps2 = conn.prepareStatement(
 "UPDATE FlightBookings SET number_seats = ? " +
 "WHERE CURRENT OF UPDATABLESTATEMENT");

Typically, you do not assign a name to the cursor, but let the system generate one for
you automatically. You can determine the system-generated cursor name of a ResultSet

Java DB Developer's Guide

66

generated by a SELECT statement using the ResultSet class's getCursorName
method.

PreparedStatement ps2 = conn.prepareStatement(
 "UPDATE employee SET bonus = ? WHERE CURRENT OF "+
 Updatable.getCursorName());

Extended updatable result set example

Connection conn = DriverManager.getConnection("jdbc:derby:sample");
conn.setAutoCommit(false);

// Create the statement with concurrency mode CONCUR_UPDATABLE
// to allow result sets to be updatable
Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE,
 ResultSet.CLOSE_CURSORS_AT_COMMIT);
// Updatable statements have some requirements
// for example, select must be on a single table
ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE FOR UPDATE of BONUS"); // Only bonus can be updated

String theDept="E21";

while (uprs.next()) {
 String firstnme = uprs.getString("FIRSTNME");
 String lastName = uprs.getString("LASTNAME");
 String workDept = uprs.getString("WORKDEPT");
 BigDecimal bonus = uprs.getBigDecimal("BONUS");
 if (workDept.equals(theDept)) {
 // if the current row meets our criteria,
 // update the updatable column in the row
 uprs.updateBigDecimal("BONUS",
 bonus.add(BigDecimal.valueOf(250L)));
 uprs.updateRow();
 System.out.println("Updating bonus for employee:" +
 firstnme + lastName);
 }
}
conn.commit(); // commit the transaction
// close object
uprs.close();
stmt.close();
// Close connection if the application does not need it any more
conn.close();

Result sets and auto-commit

Except for the result sets associated with holdable cursors, issuing a commit will cause
all result sets on your connection to be closed.

The JDBC application is not required to have auto-commit off when using update
methods on updatable result set, even if the result set is not holdable. Positioned updates
and deletes cannot be used in combination with autocommit and non-holdable result
sets.

Scrollable result sets

JDBC provides two types of result sets that allow you to scroll in either direction or
to move the cursor to a particular row. Derby supports one of these types: scrollable
insensitive result sets (ResultSet.TYPE_SCROLL_INSENSITIVE).

Java DB Developer's Guide

67

When you use a result set of type of type ResultSet.TYPE_SCROLL_INSENSITIVE,
Derby materializes rows from the first one in the result set up to the one with the biggest
row number as the rows are requested. The materialized rows will be backed to disk if
necessary, to avoid excessive memory usage.

Insensitive result sets, in contrast to sensitive result sets, cannot see changes made by
others on the rows which have been materialized. Derby allows updates of scrollable
insensitive result sets; see Visibility of changes, which also explains visibility of own
changes.

Note: Derby does not support result sets of type
ResultSet.TYPE_SCROLL_SENSITIVE.

//autocommit does not have to be off because even if
//we accidentally scroll past the last row, the implicit commit
//on the the statement will not close the result set because result sets
//are held over commit by default
conn.setAutoCommit(false);
Statement s4 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
s4.execute("set schema 'SAMP'");
ResultSet scroller=s4.executeQuery(
 "SELECT sales_person, region, sales FROM sales " +
 "WHERE sales > 8 ORDER BY sales DESC");
if (scroller.first()) { // One row is now materialized
 System.out.println("The sales rep who sold the highest number" +
 " of sales is " +
 scroller.getString("SALES_PERSON"));
} else {
 System.out.println("There are no rows.");
}
scroller.beforeFirst();
scroller.afterLast(); // By calling afterlast(), all rows will be
 materialized
scroller.absolute(3);
if (!scroller.isAfterLast()) {
 System.out.println("The employee with the third highest number " +
 "of sales is " +
 scroller.getString("SALES_PERSON") + ", with " +
 scroller.getInt("SALES") + " sales");
}
if (scroller.isLast()) {
 System.out.println("There are only three rows.");
}
if (scroller.last()) {
 System.out.println("The least highest number " +
 "of sales of the top three sales is: " +
 scroller.getInt("SALES"));
}
scroller.close();
s4.close();
conn.commit()
conn.close();
System.out.println("Closed connection");

Holdable result sets

The holdable result set feature permits an application to keep result sets open after
implicit or explicit commits. By default, the cursor controlled by the result set is held open
after a commit.

Note: Derby also supports non-holdable result sets.

When you create a statement, you can specify that the result set will be automatically
closed when a commit occurs. Result sets are automatically closed when a transaction
aborts, whether or not they have been specified to be held open.

Java DB Developer's Guide

68

To specify whether a result set should be held open after a commit takes place,
supply one of the following ResultSet parameters to the Connection method
createStatement, prepareStatement, or prepareCall:

• CLOSE_CURSORS_AT_COMMIT

Result sets are closed when an implicit or explicit commit is performed.
• HOLD_CURSORS_OVER_COMMIT

Result sets are held open when a commit is performed, implicitly or explicitly. This is
the default behavior.

The method Statement.getResultSetHoldability() indicates whether a result set generated
by the Statement object stays open or closes, upon commit. See the Java DB Reference
Manual for more information.

When an implicit or explicit commit occurs, result sets that hold cursors open behave as
follows:

• Open result sets remain open. Non-scrollable result sets becomes positioned before
the next logical row of the result set. Scrollable insensitive result sets keep their
current position.

• When the session is terminated, the result set is closed and destroyed.
• All locks are released, including locks protecting the current cursor position.
• For non-scrollable result sets, immediately following a commit, the only valid

operations that can be performed on the ResultSet object are:
• positioning the result set to the next row with ResultSet.next().
• closing the result set with ResultSet.close().

When a rollback or rollback to savepoint occurs, either explicitly or implicitly, the following
behavior applies:

• All open result sets are closed.
• All locks acquired during the unit of work are released.

Note: Holdable result sets do not work with XA transactions in Derby. When
working with XA transactions, the result set should be opened with holdability
ResultSet.CLOSE_CURSORS_AT_COMMIT.
Holdable result sets and autocommit

When autocommit is on, a positioned update or delete statement will automatically cause
the transaction to commit.

If the result set has holdability ResultSet.CLOSE_CURSORS_AT_COMMIT, combined
with autocommit on, Derby gives an exception on positioned updates and deletes
because the cursor is closed immediately before the positioned statement is commenced,
as mandated by JDBC. In contrast, no such implicit commit is done when using result set
updates methods.

Non-holdable result set example

The following example uses Connection.createStatement to return a ResultSet that will
close after a commit is performed.

Connection conn = ds.getConnection(user, passwd);
Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY,
 ResultSet.CLOSE_CURSORS_AT_COMMIT);

Locking, concurrency, and isolation

Java DB Developer's Guide

69

This section discusses topics pertinent to multi-user systems, in which concurrency is
important.

Derby is configured by default to work well for multi-user systems. For single-user
systems, you might want to tune your system so that it uses fewer resources; see Lock
granularity.

Isolation levels and concurrency

Derby provides four transaction isolation levels. Setting the transaction isolation level
for a connection allows a user to specify how severely the user's transaction should be
isolated from other transactions.

For example, it allows you to specify whether transaction A is allowed to make changes
to data that have been viewed by transaction B before transaction B has committed.

A connection determines its own isolation level, so JDBC provides an application with
a way to specify a level of transaction isolation. It specifies four levels of transaction
isolation. The higher the transaction isolation, the more care is taken to avoid conflicts;
avoiding conflicts sometimes means locking out transactions. Lower isolation levels thus
allow greater concurrency.

Inserts, updates, and deletes always behave the same no matter what the isolation level
is. Only the behavior of select statements varies.

To set isolation levels you can use the JDBC Connection.setTransactionIsolation method
or the SQL SET ISOLATION statement.

If there is an active transaction, the network client driver always commits the active
transaction, whether you use the JDBC Connection.setTransactionIsolation method
or the SQL SET ISOLATION statement. It does this even if the method call or
statement does not actually change the isolation level (that is, if it sets the isolation
level to its current value). The embedded driver also always commits the active
transaction if you use the SET ISOLATION statement. However, if you use the
Connection.setTransactionIsolation method, the embedded driver commits the active
transaction only if the call to Connection.setTransactionIsolation actually changes the
isolation level.

The names of the isolation levels are different, depending on whether you use a JDBC
method or SQL statement. Mapping of JDBC transaction isolation levels to Derby
isolation levels shows the equivalent names for isolation levels whether they are set
through the JDBC method or an SQL statement.

Table 5. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation levels for JDBC Isolation levels for SQL

Connection.TRANSACTION_READ_UNCOMMITTED
(ANSI level 0)

UR, DIRTY READ, READ
UNCOMMITTED

Connection.TRANSACTION_READ_COMMITTED
(ANSI level 1)

CS, CURSOR STABILITY, READ
COMMITTED

Connection.TRANSACTION_REPEATABLE_READ
(ANSI level 2)

RS

Connection.TRANSACTION_SERIALIZABLE
(ANSI level 3)

RR, REPEATABLE READ,
SERIALIZABLE

These levels allow you to avoid particular kinds of transaction anomalies, which are
described in Transaction Anomalies.

Java DB Developer's Guide

70

Table 6. Transaction Anomalies

Anomaly Example

Dirty Reads

A dirty read happens when a transaction
reads data that is being modified by
another transaction that has not yet
committed.

Transaction A begins.

UPDATE employee SET salary = 31650
WHERE empno = '000090'

Transaction B begins.

SELECT * FROM employee

(Transaction B sees data updated by
transaction A. Those updates have not yet
been committed.)

Non-Repeatable Reads

Non-repeatable reads happen when a
query returns data that would be different
if the query were repeated within the
same transaction. Non-repeatable reads
can occur when other transactions are
modifying data that a transaction is
reading.

Transaction A begins.

SELECT * FROM employee
WHERE empno = '000090'

Transaction B begins.

UPDATE employee SET salary = 30100
WHERE empno = '000090'

(Transaction B updates rows viewed
by transaction A before transaction A
commits.) If Transaction A issues the same
SELECT statement, the results will be
different.

Phantom Reads

Records that appear in a set being
read by another transaction. Phantom
reads can occur when other transactions
insert rows that would satisfy the
WHERE clause of another transaction's
statement.

Transaction A begins.

SELECT * FROM employee
 WHERE salary > 30000

Transaction B begins.

INSERT INTO employee
(empno, firstnme, midinit,
lastname, job,
salary) VALUES ('000350', 'NICK',
'A','GREEN','LEGAL COUNSEL',35000)

Transaction B inserts a row that would
satisfy the query in Transaction A if it were
issued again.

The transaction isolation level is a way of specifying whether these transaction anomalies
are allowed. The transaction isolation level thus affects the quantity of data locked by a
particular transaction. In addition, a DBMS's locking schema might also affect whether
these anomalies are allowed. A DBMS can lock either the entire table or only specific
rows in order to prevent transaction anomalies.

When Transaction Anomalies Are Possible shows which anomalies are possible under
the various locking schemas and isolation levels.

Table 7. When Transaction Anomalies Are Possible

Java DB Developer's Guide

71

Isolation Level
Table-Level
Locking

Row-Level
Locking

TRANSACTION_READ_UNCOMMITTED Dirty reads,
nonrepeatable
reads, and
phantom reads
possible

Dirty reads,
nonrepeatable
reads, and
phantom reads
possible

TRANSACTION_READ_COMMITTED Nonrepeatable
reads and
phantom reads
possible

Nonrepeatable
reads and
phantom reads
possible

TRANSACTION_REPEATABLE_READ Phantom reads
not possible
because entire
table is locked

Phantom reads
possible

TRANSACTION_SERIALIZABLE None None

The following java.sql.Connection isolation levels are supported:

• TRANSACTION_SERIALIZABLE

RR, SERIALIZABLE, or REPEATABLE READ from SQL.

TRANSACTION_SERIALIZABLE means that Derby treats the transactions as if
they occurred serially (one after the other) instead of concurrently. Derby issues
locks to prevent all the transaction anomalies listed in Transaction Anomalies from
occurring. The type of lock it issues is sometimes called a range lock.

• TRANSACTION_REPEATABLE_READ

RS from SQL.

TRANSACTION_REPEATABLE_READ means that Derby issues locks to prevent
only dirty reads and non-repeatable reads, but not phantoms. It does not issue
range locks for selects.

• TRANSACTION_READ_COMMITTED

CS or CURSOR STABILITY from SQL.

TRANSACTION_READ_COMMITTED means that Derby issues locks to prevent
only dirty reads, not all the transaction anomalies listed in Transaction Anomalies.

TRANSACTION_READ_COMMITTED is the default isolation level for transactions.
• TRANSACTION_READ_UNCOMMITTED

UR, DIRTY READ, or READ UNCOMMITTED from SQL.

For a SELECT INTO, FETCH with a read-only cursor, full select used in an
INSERT, full select/subquery in an UPDATE/DELETE, or scalar full select
(wherever used), READ UNCOMMITTED allows:

• Any row that is read during the unit of work to be changed by other application
processes.

• Any row that was changed by another application process to be read even if
the change has not been committed by the application process.

For other operations, the rules that apply to READ COMMITTED also apply to
READ UNCOMMITTED.

Configuring isolation levels

Java DB Developer's Guide

72

If a connection does not specify its isolation level, it inherits the default isolation level for
the Derby system. The default value is CS.

When set to CS, the connection inherits the TRANSACTION_READ_COMMITTED
isolation level. When set to RR, the connection inherits the
TRANSACTION_SERIALIZABLE isolation level, when set to RS, the connection inherits
the TRANSACTION_REPEATABLE_READ isolation level, and when set to UR, the
connection inherits the TRANSACTION_READ_UNCOMMITTED isolation level.

To override the inherited default, use the methods of java.sql.Connection.

In addition, a connection can change the isolation level of the transaction within an
SQL statement. For more information, see "SET ISOLATION statement" in the Java DB
Reference Manual. You can use the WITH clause to change the isolation level for the
current statement only, not the transaction. For information about the WITH clause, see
"SELECT statement" in the Java DB Reference Manual.

In all cases except when you change the isolation level using the WITH clause, changing
the isolation level commits the current transaction. In most cases, the current transaction
is committed even if you set the isolation level in a way that does not change it (that is, if
you set it to its current value). See Isolation levels and concurrency for details.

Note: For information about how to choose a particular isolation level, see "Shielding
users from Derby class-loading events" in Tuning Java DB and Multi-thread programming
tips.

Lock granularity

Derby can be configured for table-level locking. With table-level locking, when a
transaction locks data in order to prevent any transaction anomalies, it always locks the
entire table, not just those rows being accessed.

By default, Derby is configured for row-level locking. Row-level locking uses more
memory but allows greater concurrency, which works better in multi-user systems.
Table-level locking works best with single-user applications or read-only applications.

You typically set lock granularity for the entire Derby system, not for a particular
application. However, at runtime, Derby may escalate the lock granularity for a particular
transaction from row-level locking to table-level locking for performance reasons. You
have some control over the threshold at which this occurs. For information on turning off
row-level locking, see "derby.storage.rowLocking" in the Java DB Reference Manual. For
more information about automatic lock escalation, see "About the system's selection of
lock granularity" and "Transaction-based lock escalation" in Tuning Java DB. For more
information on tuning your Derby system, see "Tuning databases and applications," also
in Tuning Java DB.

Types and scope of locks in Derby systems

There are several types of locks available in Derby systems, including exclusive, shared,
and update locks.

Exclusive locks

When a statement modifies data, its transaction holds an exclusive lock on data that
prevents other transactions from accessing the data.

This lock remains in place until the transaction holding the lock issues a commit or
rollback. Table-level locking lowers concurrency in a multi-user system.

Java DB Developer's Guide

73

Shared locks

When a statement reads data without making any modifications, its transaction obtains a
shared lock on the data.

Another transaction that tries to read the same data is permitted to read, but
a transaction that tries to update the data will be prevented from doing so
until the shared lock is released. How long this shared lock is held depends
on the isolation level of the transaction holding the lock. Transactions using
the TRANSACTION_READ_COMMITTED isolation level release the lock
when the transaction steps through to the next row. Transactions using the
TRANSACTION_SERIALIZABLE or TRANSACTION_REPEATABLE_READ
isolation level hold the lock until the transaction is committed, so even a SELECT
can prevent updates if a commit is never issued. Transactions using the
TRANSACTION_READ_UNCOMMITTED isolation level do not request any locks.

Update locks

When a user-defined update cursor (created with the FOR UPDATE clause or by using
concurrency mode ResultSet.CONCUR_UPDATABLE) reads data, its transaction
obtains an update lock on the data.

If the user-defined update cursor updates the data, the update lock is converted to an
exclusive lock. If the cursor does not update the row, when the transaction steps through
to the next row, transactions using the TRANSACTION_READ_COMMITTED isolation
level release the lock. (For update locks, the TRANSACTION_READ_UNCOMMITTED
isolation level acts the same way as TRANSACTION_READ_COMMITTED.)

Update locks help minimize deadlocks.

Lock compatibility

This table lists compatibility between lock types. + means the lock types are compatible,
while - means they are incompatible.

Table 8. Lock Compatibility Matrix

 ' Shared Update Exclusive

Shared + + -

Update + - -

Exclusive - - -

Scope of locks

The amount of data locked by a statement can vary.

Table locks

A statement can lock the entire table.

Table-level locking systems always lock entire tables.

Row-level locking systems can lock entire tables if the WHERE clause of a statement
cannot use an index. For example, UPDATES that cannot use an index lock the entire
table.

Row-level locking systems can lock entire tables if a high number of single-row locks
would be less efficient than a single table-level lock. Choosing table-level locking
instead of row-level locking for performance reasons is called lock escalation. For more
information about this topic, see "About the system's selection of lock granularity" and
"Transaction-based lock escalation" in Tuning Java DB.

Java DB Developer's Guide

74

Single-row locks

A statement can lock only a single row at a time.

For row-level locking systems:
• For TRANSACTION_REPEATABLE_READ isolation, the locks are released at the

end of the transaction.
• For TRANSACTION_READ_COMMITTED isolation, Derby locks rows only as the

application steps through the rows in the result. The current row is locked. The row
lock is released when the application goes to the next row.

• For TRANSACTION_SERIALIZABLE isolation, however, Derby locks the whole set
before the application begins stepping through.

• For TRANSACTION_READ_UNCOMMITTED, no row locks are requested.

Derby locks single rows for INSERT statements, holding each row until the transaction is
committed. If there is an index associated with the table, the previous key is also locked.

Range locks

A statement can lock a range of rows (range lock).

For row-level locking systems:
• For any isolation level, Derby locks all the rows in the result plus an entire range of

rows for updates or deletes.
• For the TRANSACTION_SERIALIZABLE isolation level, Derby locks all the rows

in the result plus an entire range of rows in the table for SELECTs to prevent
nonrepeatable reads and phantoms.

For example, if a SELECT statement specifies rows in the Employee table where the
salary is BETWEEN two values, the system can lock more than just the actual rows it
returns in the result. It also must lock the entire range of rows between those two values
to prevent another transaction from inserting, deleting, or updating a row within that
range.

An index must be available for a range lock. If one is not available, Derby locks the entire
table.

Table 9. Types and scopes of locking

Transaction Isolation
Level

Table-Level
Locking Row-Level Locking

Connection.TRANSACTION_READ_UNCOMMITED
(SQL: UR)

For SELECT
statements,
table-level locking
is never requested
using this isolation
level. For other
statements, same
as for TRANSACTION_READ_COMMITTED.

SELECT statements get no
locks. For other statements,
same as for TRANSACTION_
READ_COMMITTED.

Connection.TRANSACTION_READ_COMMITTED
(SQL: CS)

SELECT statements
get a shared lock
on the entire table.
The locks are
released when
the user closes
the ResultSet.
Other statements
get exclusive

SELECTs lock and release single
rows as the user steps through the
ResultSet. UPDATEs and DELETEs
get exclusive locks on a range
of rows. INSERT statements get
exclusive locks on single rows (and
sometimes on the preceding rows).

Java DB Developer's Guide

75

Transaction Isolation
Level

Table-Level
Locking Row-Level Locking

locks on the entire
table, which are
released when
the transaction
commits.

Connection.TRANSACTION_REPEATABLE_READ
(SQL: RS)

Same as for TRANSACTION_SERIALIZABLESELECT statements get shared
locks on the rows that satisfy the
WHERE clause (but do not prevent
inserts into this range). UPDATEs and
DELETEs get exclusive locks on a
range of rows. INSERT statements
get exclusive locks on single rows
(and sometimes on the preceding
rows).

Connection.TRANSACTION_SERIALIZABLE
(SQL: RR)

SELECT statements
get a shared lock
on the entire table.
Other statements
get exclusive
locks on the entire
table, which are
released when
the transaction
commits.

SELECT statements get shared locks
on a range of rows. UPDATE and
DELETE statements get exclusive
locks on a range of rows. INSERT
statements get exclusive locks on
single rows (and sometimes on the
preceding rows).

Notes on locking

In addition to the locks already described, foreign key lookups require briefly held shared
locks on the referenced table (row or table, depending on the configuration).

The table and examples in this section do not take performance-based lock escalation
into account. Remember that the system can choose table-level locking for performance
reasons.

Deadlocks

In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up locks.

For example, Transaction A might hold a lock on some rows in the Accounts table and
needs to update some rows in the Orders table to finish. Transaction B holds locks on
those very rows in the Orders table but needs to update the rows in the Accounts table
held by Transaction A. Transaction A cannot complete its transaction because of the
lock on Orders. Transaction B cannot complete its transaction because of the lock on
Accounts. All activity comes to a halt and remains at a standstill forever unless the DBMS
detects the deadlock and aborts one of the transactions.

Figure 6. A deadlock where two transactions are waiting for one another to give up
locks.

Java DB Developer's Guide

76

Avoiding deadlocks

Using both row-level locking and the TRANSACTION_READ_COMMITTED isolation
level makes it likely that you will avoid deadlocks (both settings are Derby defaults).
However, deadlocks are still possible.

Derby application developers can avoid deadlocks by using consistent application logic;
for example, transactions that access Accounts and Orders should always access the
tables in the same order. That way, in the scenario described above, Transaction B
simply waits for transaction A to release the lock on Orders before it begins. When
transaction A releases the lock on Orders, Transaction B can proceed freely.

Another tool available to you is the LOCK TABLE statement. A transaction can attempt
to lock a table in exclusive mode when it starts to prevent other transactions from getting
shared locks on a table. For more information, see "LOCK TABLE statement" in the Java
DB Reference Manual.

Deadlock detection

When a transaction waits more than a specific amount of time to obtain a lock (called the
deadlock timeout), Derby can detect whether the transaction is involved in a deadlock.

When Derby analyzes such a situation for deadlocks it tries to determine how many
transactions are involved in the deadlock (two or more). Usually aborting one transaction
breaks the deadlock. Derby must pick one transaction as the victim and abort that
transaction; it picks the transaction that holds the fewest number of locks as the victim,
on the assumption that transaction has performed the least amount of work. (This may
not be the case, however; the transaction might have recently been escalated from
row-level locking to table locking and thus hold a small number of locks even though it
has done the most work.)

When Derby aborts the victim transaction, it receives a deadlock error (an SQLException
with an SQLState of 40001). The error message gives you the transaction IDs, the
statements, and the status of locks involved in a deadlock situation.

Java DB Developer's Guide

77

ERROR 40001: A lock could not be obtained due to a deadlock,
cycle of locks & waiters is:
Lock : ROW, DEPARTMENT, (1,14)
Waiting XID : {752, X} , APP, update department set location='Boise'
 where deptno='E21'
Granted XID : {758, X} Lock : ROW, EMPLOYEE, (2,8)
Waiting XID : {758, U} , APP, update employee set bonus=150 where
 salary=23840
Granted XID : {752, X} The selected victim is XID : 752

For information on configuring when deadlock checking occurs, see Configuring deadlock
detection and lock wait timeouts.

Note: Deadlocks are detected only within a single database. Deadlocks across multiple
databases are not detected. Non-database deadlocks caused by Java synchronization
primitives are not detected by Derby.
Lock wait timeouts

Even if a transaction is not involved in a deadlock, it might have to wait a considerable
amount of time to obtain a lock because of a long-running transaction or transactions
holding locks on the tables it needs.

In such a situation, you might not want a transaction to wait indefinitely. Instead, you
might want the waiting transaction to abort, or time out, after a reasonable amount of
time, called a lock wait timeout.

Configuring deadlock detection and lock wait timeouts

You configure the amount of time a transaction waits before Derby does any deadlock
checking with the derby.locks.deadlockTimeout property.

You configure the amount of time a transaction waits before timing out with the
derby.locks.waitTimeout property. When configuring your database or system,
you should consider these properties together. For example, in order for any deadlock
checking to occur, the derby.locks.deadlockTimeout property must be set to a
value lower than the derby.locks.waitTimeout property. If it is set to a value equal
to or higher than the derby.locks.waitTimeout, the transaction times out before
Derby does any deadlock checking.

By default, derby.locks.waitTimeout is set to 60 seconds. -1 is the equivalent of no wait
timeout. This means that transactions never time out, although Derby can choose a
transaction as a deadlock victim.

Figure 7. One possible configuration: deadlock checking occurs when a
transaction has waited 30 seconds; no lock wait timeouts occur.

Java DB Developer's Guide

78

Figure 8. Another typical configuration: deadlock checking occurs after a
transaction has waited 60 seconds for a lock; after 90 seconds, the transaction
times out and is rolled back.

Java DB Developer's Guide

79

Figure 9. A configuration in which no deadlock checking occurs: transactions time
out after they have waited 50 seconds. No deadlock checking occurs.

Debugging Deadlocks

If deadlocks occur frequently in your multi-user system with a particular application, you
might need to do some debugging.

Derby provides a class to help you in this situation, org.apache.derby.diag.LockTable.
You can also set the property derby.locks.deadlockTrace to dump additional information
to the derby.log file about any deadlocks that occur on your system. See the Tuning
Guide for more information on this property. For information, see the Java DB Server and
Administration Guide.

Programming applications to handle deadlocks

When you configure your system for deadlock and lockwait timeouts and an application
could be chosen as a victim when the transaction times out, you should program your
application to handle them.

To do this, test for SQLExceptions with SQLStates of 40001 (deadlock timeout) or
40XL1 or 40XL2 (lockwait timeout).

In the case of a deadlock you might want to re-try the transaction that was chosen as a
victim. In the case of a lock wait timeout, you probably do not want to do this right away.

The following code is one example of how to handle a deadlock timeout.

/// if this code might encounter a deadlock,
// put the whole thing in a try/catch block
// then try again if the deadlock victim exception
// was thrown
try {
 s6.executeUpdate(
 "UPDATE employee " +
 "SET bonus = 625 "

Java DB Developer's Guide

80

 "WHERE empno='000150'");
 s6.executeUpdate("UPDATE project " +
 "SET respemp = '000150' " +
 "WHERE projno='IF1000'");
}
// note: do not catch such exceptions in database-side methods;
// catch such exceptions only at the outermost level of
// application code.
// See Database-side JDBC routines and SQLExceptions.
catch (SQLException se) {
 if (se.getSQLState().equals("40001")) {
 // it was chosen as a victim of a deadlock.
 // try again at least once at this point.
 System.out.println("Will try the transaction again.");
 s6.executeUpdate("UPDATE employee " +
 "SET bonus = 625 " +
 "WHERE empno='000150'");
 s6.executeUpdate("UPDATE project " +
 "SET respemp = 000150 " +
 "WHERE projno='IF1000'");
 }
 else throw se;
}

Working with multiple connections to a single database
This section discusses deploying Derby so that many connections can exist to a single
database.

Deployment options and threading and connection modes

A database can be available to multiple connections in several situations.

• Multiple applications access a single database (possible only when Derby is running
inside a server framework).

• A single application has more than one Connection to the same database.

The way you deploy Derby affects the ways applications can use multi-threading
and connections, as shown in Threading and Connection Modes.

Table 10. Threading and Connection Modes

Connection mode Embedded Server

Multi-Threaded

From an application, using
a singleConnection to
a Derby database and
issuing requests against
that connection in multiple
threads.

Supply a single Connection
object to separate threads.
Derby ensures that only one
operation is applied at a
time for consistency. Server
frameworks automatically
manage multi-threaded
operations..

Server frameworks
can automatically
multi-thread
operations. Remote
client applications
can multi-thread if
desired.

Multi-Connection

From an application, using
multiple connections to a
Derby database and issuing
requests against those
connections on multiple
threads.

Create individual
connections within a single
application and use the
appropriate connection for
each JDBC request. The
connections can all be to the
same database, or can be

Remote client
applications can
establish the
multiple connections
desired.

Java DB Developer's Guide

81

Connection mode Embedded Server

to different databases in the
same Derby system.

Multi-User

Multiple applications (or
JVMs) accessing the same
Derby database. Each user
application has its own
connection or connections
to the database.

Not possible. Only one
application can access a
database at a time, and only
one application can access
a specific system at a time.
When using a pre-1.4 JVM,
Derby might not prevent
multiple applications from
concurrently accessing the
same Derby system, but
do not allow this because
such access can corrupt the
databases involved.

Only one server
should access a
database at a time.
Multiple remote
client applications
can access the
same server, and
thus can access
the same database
at the same time
through that server.

Multi-user database access

Multi-user database access is possible if Derby is running inside a server framework.

If more than one client application tries to modify the same data, the connection that
gets the table first gets the lock on the data (either specific rows or the entire table).
The second connection has to wait until the first connection commits or rolls back the
transaction in order to access the data. If two connections are only querying and not
modifying data, they can both access the same data at the same time because they can
each get a shared lock.

Multiple connections from a single application

A single application can work with multiple Connections to the same database and assign
them to different threads.

You can avoid concurrency and deadlock problems in your application in several ways:

• Use the TRANSACTION_READ_COMMITTED isolation level and turn on row-level
locking (the defaults).

• Beware of deadlocks caused by using more than one Connection in a single thread
(the most obvious case). For example, if the thread tries to update the same table
from two different Connections, a deadlock can occur.

• Assign Connections to threads that handle discrete tasks. For example, do not have
two threads update the Hotels table. Have one thread update the Hotels table and a
different one update the Groups table.

• If threads access the same tables, commit transactions often.
• Multi-threaded Java applications have the ability to self-deadlock without even

accessing a database, so beware of that too.
• Use nested connections to share the same lock space.

Working with multiple threads sharing a single connection
JDBC allows you to share a single Connection among multiple threads.

Pitfalls of sharing a connection among threads

Here is a review of the potential pitfalls of sharing a single Connection among multiple
threads.

Java DB Developer's Guide

82

• Committing or rolling back a transaction closes all open ResultSet objects and
currently executing Statements, unless you are using held cursors.

If one thread commits, it closes the Statements and ResultSets of all other threads
using the same connection.

• Executing a Statement automatically closes any existing open ResultSet generated
by an earlier execution of that Statement.

If threads share Statements, one thread could close another's ResultSet.

In many cases, it is easier to assign each thread to a distinct Connection. If thread
A does database work that is not transactionally related to thread B, assign them to
different Connections. For example, if thread A is associated with a user input window
that allows users to delete hotels and thread B is associated with a user window that
allows users to view city information, assign those threads to different Connections. That
way, when thread A commits, it does not affect any ResultSets or Statements of thread
B.

Another strategy is to have one thread do queries and another thread do updates.
Queries hold shared locks until the transaction commits in SERIALIZABLE isolation
mode; use READ_COMMITTED instead.

Yet another strategy is to have only one thread do database access. Have other threads
get information from the database access thread.

Multiple threads are permitted to share a Connection, Statement, or ResultSet. However,
the application programmer must ensure that one thread does not affect the behavior of
the others.

Recommended Practices

Here are some tips for avoiding unexpected behavior:

• Avoid sharing Statements (and their ResultSets) among threads.
• Each time a thread executes a Statement, it should process the results before

relinquishing the Connection.
• Each time a thread accesses the Connection, it should consistently commit or not,

depending on application protocol.
• Have one thread be the "managing" database Connection thread that should

handle the higher-level tasks, such as establishing the Connection, committing,
rolling back, changing Connection properties such as auto-commit, closing the
Connection, shutting down the database (in an embedded environment), and so
on.

• Close ResultSets and Statements that are no longer needed in order to release
resources.

Multi-thread programming tips

You may be sharing a Connection among multiple threads because you have
experienced poor concurrency using separate transactions.

Here are some tips for increasing concurrency:

• Use row-level locking.
• Use the TRANSACTION_READ_COMMITTED isolation level.
• Avoid queries that cannot use indexes; they require locking of all the rows in the

table (if only very briefly) and might block an update.

In addition, some programmers might share a statement among multiple threads to avoid
the overhead of each thread's having its own. Using the single statement cache, threads
can share the same statement from different connections. For more information, see
"Using the statement cache" in Tuning Java DB.

Java DB Developer's Guide

83

Example of threads sharing a statement

This example shows what can happen if two threads try to share a single Statement.

PreparedStatement ps = conn.prepareStatement(
 "UPDATE account SET balance = balance + ? WHERE id = ?");
/* now assume two threads T1,T2 are given this
java.sql.PreparedStatement object and that the following events
happen in the order shown (pseudojava code)*/
T1 - ps.setBigDecimal(1, 100.00);
T1 - ps.setLong(2, 1234);
T2 - ps.setBigDecimal(1, -500.00);
// *** At this point the prepared statement has the parameters
// -500.00 and 1234
// T1 thinks it is adding 100.00 to account 1234 but actually
// it is subtracting 500.00
T1 - ps.executeUpdate();
T2 - ps.setLong(2, 5678);
// T2 executes the correct update
 T2 - ps.executeUpdate();
/* Also, the auto-commit mode of the connection can lead
to some strange behavior.*/

If it is absolutely necessary, the application can get around this problem with Java
synchronization.

If the threads each obtain their own PreparedStatement (with identical text), their
setXXX calls do not interfere with each other. Moreover, Derby is able to share the same
compiled query plan between the two statements; it needs to maintain only separate
state information. However, there is the potential for confusion in regard to the timing of
the commit, since a single commit commits all the statements in a transaction.

Working with database threads in an embedded environment
Do not use interrupt calls to notify threads that are accessing a database, because
Derby will catch the interrupt call and close the connection to the database. Use
wait and notify calls instead.

This will not happen in a client/server environment, but if you want your application to
work in either environment it is good practice to follow this rule.

There are also special considerations when working with more than one database thread
in an application.

Working with Derby SQLExceptions in an application
JDBC generates exceptions of the type java.sql.SQLException. If your application
runs on JDK 1.6 or higher, the exceptions will be the refined subtypes of
java.sql.SQLException introduced by JDBC4. To see the exceptions generated by Derby,
retrieve and process the SQLExceptions in a catch block.

Information provided in SQL Exceptions

Derby provides the message, SQLState values, and error codes in SQL exceptions.

Use the getSQLState and getMessage methods to view the SQLState and error
messages. Use getErrorCode to see the error code. The error code defines the
severity of the error and is not unique to each exception.
Note: Severity is not standardized in Derby. Applications should not depend on the
severity returned from SQL exceptions.

Java DB Developer's Guide

84

Applications should also check for and process java.sql.SQLWarnings, which are
processed in a similar way. Derby issues an SQLWarning if the create=true attribute
is specified and the database already exists.

Example of processing SQLExceptions

A single error can generate more than one SQLException. Use a loop and the
getNextException method to process all SQLExceptions in the chain. In many
cases, the second exception in the chain is the pertinent one.

The following is an example:

catch (Throwable e) {
 System.out.println("exception thrown:");
 errorPrint(e);
}
static void errorPrint(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else
 System.out.println("A non-SQL error: " + e.toString());
}
static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle.printStackTrace();
 sqle = sqle.getNextException();
 }
}

If your application runs on JDK 1.4 or higher, then the SQLException may wrap another,
triggering exception, like an IOException. To inspect this additional, wrapped error, call
the SQLException's getCause method.

See also "Derby Exception Messages and SQL States", in the Java DB Reference
Manual.

Java DB Developer's Guide

85

Using Derby as a J2EE resource manager

J2EE, or the Java 2 Platform, Enterprise Edition, is a standard for development of
enterprise applications based on reusable components in a multi-tier environment. In
addition to the features of the Java 2 Platform, Standard Edition (J2SE), J2EE adds
support for Enterprise Java Beans (EJBs), Java Server Pages (JSPs), Servlets, XML and
many more. The J2EE architecture is used to bring together existing technologies and
enterprise applications in a single, manageable environment.

Derby is a J2EE-conformant component in a distributed J2EE system. As such, it is one
part of a larger system that includes, among other things, a JNDI server, a connection
pool module, a transaction manager, a resource manager, and user applications. Within
this system, Derby can serve as the resource manager.

For more information on J2EE and how to work in this environment, see the J2EE
specification available at http://java.sun.com/j2ee/docs.html.

Note: This chapter does not show you how to use Derby as a Resource Manager.
Instead, it provides details specific to Derby that are not covered in the specification. This
information is useful to programmers developing other modules in a distributed J2EE
system, not to end-user application developers.

In order to qualify as a resource manager in a J2EE system, J2EE requires these basic
areas of support. These three areas of support involve implementation of APIS and are
described in "J2EE Compliance: Java Transaction API and javax.sql Extensions" in the
Java DB Reference Manual.

This chapter describes the Derby classes that implement the APIs and provides some
implementation-specific details.

Classes that pertain to resource managers
Derby provides two variants of each DataSource interface defined by the JDBC API.

Applications that run on the J2SE 1.4 or 1.5 platform must use the first variant.
Applications that run on the Java SE 6 platform can use either of the two variants.
However, the DataSource methods specific to the JDBC 4 API are available only from the
second variant (the one whose class name ends with "40").

If an application is running on the Java SE 6 platform, all connection objects returned
from the DataSource will be JDBC 4 connection objects, regardless of which DataSource
variant is in use.

The Derby implementation classes for the DataSource interfaces are as follows:

• org.apache.derby.jdbc.EmbeddedDataSource and
org.apache.derby.jdbc.EmbeddedDataSource40

Implements the javax.sql.DataSource interface, which a JNDI server can reference.
Typically this is the object that you work with as a DataSource.

• org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource and
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

Implements the javax.sql.ConnectionPoolDataSource interface. A factory for
PooledConnection objects.

• org.apache.derby.jdbc.EmbeddedXADataSource and
org.apache.derby.jdbc.EmbeddedXADataSource40

Derby's implementation of the javax.sql.XADataSource interface.

Java DB Developer's Guide

86

See the javadoc for each class for more information.

Getting a DataSource
Normally, you can simply work with the interfaces for javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, and javax.sql.XADataSource, as shown in the
following examples.

// If your application is running on the Java SE 6 platform,
// and if you would like to call DataSource methods specific
// to the JDBC 4 API (for example, isWrapperFor), use the
// JDBC 4 variants of these classes:
//
// org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
// org.apache.derby.jdbc.EmbeddedDataSource40
// org.apache.derby.jdbc.EmbeddedXADataSource40
//
import org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource;
import org.apache.derby.jdbc.EmbeddedDataSource;
import org.apache.derby.jdbc.EmbeddedXADataSource;

javax.sql.ConnectionPoolDataSource cpds = new
 EmbeddedConnectionPoolDataSource();
javax.sql.DataSource ds = new EmbeddedDataSource();
javax.sql.XADataSource xads = new EmbeddedXADataSource();

Derby provides six properties for a DataSource. These properties are in
org.apache.derby.jdbc.EmbeddedDataSource. They are:

• DatabaseName

This mandatory property must be set. It identifies which database to access.
To access a database named wombat located at /local1/db/wombat, call
setDatabaseName("/local1/db/wombat") on the data source object.

• CreateDatabase

Optional. Sets a property to create a database the next time the getConnection
method of a data source object is called. The string createString is always "create"
(or possibly null). (Use the method setDatabaseName() to define the name of the
database.)

• ShutdownDatabase

Optional. Sets a property to shut down a database. The string shutDownString is
always "shutdown" (or possibly null). Shuts down the database the next time the
getConnection method of a data source object is called.

• DataSourceName

Optional. Name for ConnectionPoolDataSource or XADataSource. Not used by the
data source object. Used for informational purposes only.

• Description

Optional. Description of the data source. Not used by the data source object. Used
for informational purposes only.

• connectionAttributes

Optional. Connection attributes specific to Derby. See the Java DB Reference
Manual for a more information about the attributes.

Shutting down or creating a database
If you need to shut down or create a database, it is easiest just to work with the
Derby-specific implementations of interfaces, as shown in these examples.

Java DB Developer's Guide

87

javax.sql.XADataSource xads = makeXADataSource(mydb, true);

// example of setting property directory using
// Derby 's XADataSource object
import org.apache.derby.jdbc.EmbeddedXADataSource;
import javax.sql.XADataSource;
// dbname is the database name
// if create is true, create the database if not already created
XADataSource makeXADataSource (String dbname, boolean create)
{
 //
 // If your application runs on JDK 1.6 or higher, then
 // you will use the JDBC4 variant of this class:
 // EmbeddedXADataSource40.
 //
 EmbeddedXADataSource xads = new EmbeddedXADataSource();
 // use Derby 's setDatabaseName call
 xads.setDatabaseName(dbname);
 if (create)
 xads.setCreateDatabase("create");
 return xads;
}

Setting the property does not create or shut down the database. The database is not
actually created or shut down until the next connection request.

Java DB Developer's Guide

88

Derby and Security

Derby can be deployed in a number of ways and in a number of different environments.
The security needs of the Derby system are also diverse.

Derby supplies or supports the following optional security mechanisms:

• User authentication

Derby verifies user names and passwords before permitting them access to the
Derby system.

• User authorization

A means of granting specific users permission to read a database or to write to a
database.

• Disk encryption

A means of encrypting Derby data stored on disk.
• Validation of Certificate for Signed Jar Files

In a Java 2 environment, Derby validates certificates for classes loaded from signed
jar files.

• Network encryption and authentication

Derby network traffic may be encrypted with SSL/TLS. SSL/TLS certificate
authentication is also supported. See "Network encryption and authentication with
SSL/TLS" in the Java DB Server and Administration Guide for details.

The following figure shows some of the Derby security mechanisms at work in a
client/server environment. User authentication is performed by accessing an LDAP
Directory Service. The data in the database is not encrypted in this trusted environment.

Figure 10. Example of using an LDAP Directory Service in a trusted environment.

Java DB Developer's Guide

89

The following figure shows how another Derby security mechanism, disk encryption,
protects data when the recipient might not know how to protect data. It is useful for
databases deployed in an embedded environment.

Figure 11. Example of using disk encryption to protect data.

Configuring security for your environment
In most cases, you enable Derby's security features through the use of properties. It is
important to understand the best way of setting properties for your environment.

Derby does not come with a built-in superuser. For that reason, be careful when
configuring Derby for user authentication and user authorization.

1. When first working with security, work with system-level properties only so that you
can easily override them if you make a mistake.

2. Be sure to create at least one valid user, and grant that user full (read-write) access.
For example, you might always want to create a user called sa with the password
derby while you are developing.

Java DB Developer's Guide

90

3. Test the authentication system while it is still configured at the system level. Be
absolutely certain that you have configured the system correctly before setting the
properties as database-level properties.

4. Before disabling system-level properties (by setting derby.database.propertiesOnly
to true), test that at least one database-level read-write user (such as sa) is valid.
If you do not have at least one valid user that the system can authenticate, you will
not be able to access your database.

Configuring security in a client/server environment

This procedure requires a system with multiple databases and some administrative
resources.

1. Configure security features as system properties. See Scope of properties and
Setting system-wide properties.

2. Provide administrative-level protection for the derby.properties file and Derby
databases. For example, you can protect these files and directories with operating
system permissions and firewalls.

3. Turn on user authentication for your system. All users must provide valid user IDs
and passwords to access the Derby system. If you are using Derby's built-in users,
configure users for the system in the derby.properties file. Provide the protection for
this file.

4. Configure user authorization for sensitive databases in your system. Only
designated users will be able to access sensitive databases. You typically configure
user authorization with database-level properties. It is also possible to configure
user authorization with system-level properties. This is useful when you are
developing systems or when all databases have the same level of sensitivity.

5. Check and if necessary configure your Derby network security according to your
environment. See the section "Network client security" in the Java DB Server and
Administration Guide.

Configuring security in an embedded environment

In an embedded environment, typically there is only one database per system and there
are no administrative resources to protect databases.

To configure security in an embedded environment:
1. Encrypt the database when you create it.
2. Configure all security features as database-level properties. These properties are

stored in the database (which is encrypted). See Scope of properties and Setting
database-wide properties for more information.

3. Turn on protection for database-level properties so that they cannot be overridden
by system properties by setting the derby.database.propertiesOnly property to
TRUE. See the Java DB Reference Manual for details on this property.

4. To prevent unauthorized users from accessing databases once they are booted,
turn on user authentication for the database and configure user authorization for the
database.

5. If you are using Derby's built-in users, configure each user as a database-level
property so that user names and passwords can be encrypted.

Working with user authentication
Derby provides support for user authentication. User authentication means that Derby
authenticates the name and password for a user before allowing that user access to the
system.

Java DB Developer's Guide

91

When user authentication is enabled (which it is not by default), the user requesting a
connection must provide a valid name and password, which Derby verifies against the
repository of users defined for the system. After Derby authenticates the user, it grants
the user access to the Derby system but not necessarily access to the database made in
the connection request. In the Derby system, access to a database is determined by user
authorization.

For user authentication, Derby allows you to provide a repository of users in a number
of different ways. For example, you can hook Derby up to an external directory service
elsewhere in your enterprise, create your own directory service, or use Derby's simple
mechanism for creating a built-in repository of users.

You can define a repository of users for a particular database or for an entire system,
depending on whether you use system-wide or database-wide properties.

When Derby user authentication is enabled and Derby uses an external directory service,
the architecture looks something like that shown in the figure below.

Figure 12. Derby user authentication using an external service. The application
can be a single-user application with an embedded Derby engine or a multi-user
application server.

Derby always runs embedded in another Java application, whether that application is a
single-user application or a multiple-user application server or connectivity framework.

A database can be accessed by only one JVM at a time, so it is possible to deploy a
system in which the application in which Derby is embedded, not Derby, handles the user
authentication by connecting to an external directory service.

Figure 13. The application provides the user authentication using an external
service. The application can be a single-user application with an embedded Derby
engine or a multi-user application server.

Java DB Developer's Guide

92

Enabling user authentication

To enable user authentication, set the derby.connection.requireAuthentication property
to true. Otherwise, Derby does not require a user name and password. You can set this
property as a system-wide property or as a database-wide property.

For a multi-user product, you would typically set it for the system in the derby.properties
file for your server, since it is in a trusted environment.

Note: If you start a Derby system with user authentication enabled but without defining
at least one user, you will not be able to shut down the system gracefully. When Derby is
running in a connectivity server and user authentication is turned on, stopping the server
requires a user name and password. You will need to alter shutdown scripts accordingly.

Note: Additionally, if you create and start a Derby system with user authentication and
SQL authorization both enabled, or plan to enable them later, you should make sure you
create the database by connecting as the user that is to become the database owner. If
you neglect to supply a user when the database is created, the database owner will by
default become "APP". If you later enable both authentication and SQL authorization and
"APP" is a not valid user name, you will not be able to perform operations restricted to
the database owner, including shutting down the database (as opposed to the full system
which may currently be shut down by any authenticated user, see previous note). Nor will
you be able to (re)encrypt the database nor perform a full upgrade of it.

Defining users

Derby provides several ways to define the repository of users and passwords. To
specify which of these services to use with your Derby system, set the property
derby.authentication.provider to the appropriate value as discussed here.

Setting the property as a system-wide property creates system-wide users. Setting the
property as a database-wide property creates users for a single database only.

• External directory service: LDAP directory service. This includes Windows NT
domain user authentication through the Netscape NT Synchronization Service.

Java DB Developer's Guide

93

• User-defined class
• Built-in Derby users

Note: Shutting down the Derby system (for example, using the shutdown=true form of
the connection URL without specifying a particular database) when user authentication is
turned on requires that you define at least one user as a system-wide user.

External directory service

A directory service stores names and attributes of those names. A typical use for a
directory service is to store user names and passwords for a computer system. Derby
uses the Java naming and directory interface (JNDI) to interact with external directory
services that can provide authentication of users' names and passwords.

LDAP directory service

You can allow Derby to authenticate users against an existing LDAP directory service
within your enterprise. LDAP (lightweight directory access protocol) provides an open
directory access protocol running over TCP/IP. An LDAP directory service can quickly
authenticate a user's name and password.

To use an LDAP directory service, set derby.authentication.provider to LDAP.

Examples of LDAP service providers are:

• Netscape Directory Server

Netscape Directory Server is an LDAP directory server. In addition, the Netscape
Directory Synchronization Service synchronizes entries in a Windows NT directory
with the entries in Netscape's Directory Server. It allows you to use the Windows NT
directory as a repository for Derby users.

• UMich slapd (freeware for the UNIX platform from the University of Michigan)
• AE SLAPD for Windows NT, from AEInc

Libraries for LDAP user authentication:

To use an LDAP directory service with Derby, you need these libraries in your classpath.

• jndi.jar

JNDI classes
• ldap.jar

LDAP provider from Sun
• providerutil.jar

JNDI classes for a provider

Derby does not provide these libraries; they are available from Sun on the JNDI page.
Use the 1.1.x versions of these libraries, not the 1.2.x versions. You might need to do two
separate downloads to obtain all the required libraries.

Setting up Derby to use your LDAP directory service:

When specifying LDAP as your authentication service, you must specify what LDAP
server to use.

• derby.authentication.server

Set the property derby.authentication.server to the URL to the LDAP server. For
example:

derby.authentication.server=ldap://godfrey:389/

The LDAP server may be specified using just the server name, the server name and
its port number separated by a colon, or a ldap URL. If a full URL is not provided,

Java DB Developer's Guide

94

Derby will by default use unencrypted LDAP - to use SSL encrypted LDAP an URL
starting with "ldaps://" must be provided.

Also note that support for ldaps:// URLs requires that Derby runs on Java 1.4.2 or
higher.

Guest access to search for DNs:

In an LDAP system, users are hierarchically organized in the directory as a set of
entries. An entry is a set of name-attribute pairs identified by a unique name, called a DN
(distinguished name).

An entry is unambiguously identified by a DN, which is the concatenation of selected
attributes from each entry in the tree along a path leading from the root down to the
named entry, ordered from right to left. For example, a DN for a user might look like this:

cn=mary,ou=People,o=FlyTours.com

uid=mary,ou=People,o=FlyTours.com

The allowable entries for the name are defined by the entry's objectClass.

An LDAP client can bind to the directory (successfully log in) if it provides a user ID and
password. The user ID must be a DN, the fully qualified list of names and attributes. This
means that the user must provide a very long name.

Typically, the user knows only a simple user name (e.g., the first part of the DN above,
mary). With Derby, you do not need the full DN, because an LDAP client (Derby) can go
to the directory first as a guest or even an anonymous user, search for the full DN, then
rebind to the directory using the full DN (and thus authenticate the user).

Derby typically initiates a search for a full DN before binding to the directory using the full
DN for user authentication. Derby does not initiate a search in the following cases:

• You have set derby.authentication.ldap.searchFilter to derby.user.
• A user DN has been cached locally for the specific user with the

derby.user.UserName property.

For more information, see "derby.authentication.ldap.searchFilter" in the Java DB
Reference Manual.

Some systems permit anonymous searches; other require a user DN and password. You
can specify a user's DN and password for the search with the properties listed below.
In addition, you can limit the scope of the search by specifying a filter (definition of the
object class for the user) and a base (directory from which to begin the search) with the
properties listed below.

• derby.authentication.ldap.searchAuthDN (optional)

Specifies the DN with which to bind (authenticate) to the server when searching
for user DNs. This parameter is optional if anonymous access is supported by your
server. If specified, this value must be a DN recognized by the directory service,
and it must also have the authority to search for the entries.

If not set, it defaults to an anonymous search using the root DN specified by the
derby.authentication.ldap.searchBase property. For example:

uid=guest,o=FlyTours.com
• derby.authentication.ldap.searchAuthPW (optional)

Specifies the password to use for the guest user configured above to bind to the
directory service when looking up the DN. If not set, it defaults to an anonymous
search using the root DN specified by the derby.authentication.ldap.searchBase
property.

Java DB Developer's Guide

95

myPassword
• derby.authentication.ldap.searchBase (optional)

Specifies the root DN of the point in your hierarchy from which to begin a guest
search for the user's DN. For example:

ou=people,o=FlyTours.com

When using Netscape Directory Server, set this property to the root DN, the special
entry to which access control does not apply (optional).

To narrow the search, you can specify a user's objectClass.

• derby.authentication.ldap.searchFilter (optional)

Set derby.authentication.ldap.searchFilter to a logical expression that specifies what
constitutes a user for your LDAP directory service. The default value of this property
is objectClass=inetOrgPerson. For example:

objectClass=person

See the Java DB Reference Manual for details on all these properties.

LDAP performance issues:

For performance reasons, the LDAP directory server should be in the same LAN as
Derby. Derby does not cache the user's credential information locally and thus must
connect to the directory server every time a user connects.

Connection requests that provide the full DN are faster than those that must search for
the full DN.

Considerations when using Windows NT with LDAP:

Netscape provides LDAP functionality for Windows NT systems with its Netscape
Directory Synchronization service, which synchronizes the Windows NT users with the
Netscape Directory Server. SSL is recommended in this configuration.

LDAP restrictions:

Derby does not support LDAP groups.

JNDI-specific properties for external directory services

Derby allows you to set a few advanced JNDI properties, which you can set in any of the
supported ways of setting Derby properties. Typically you would set these at the same
level (database or system) for which you configured the external authentication service.

The list of supported properties can be found in Appendix A: JNDI
Context Environment in the Java Naming and Directory API at
http://java.sun.com/products/jndi/reference/api/index.html. The external directory service
must support the property.

Each JNDI provider has its set of properties that you can set within the Derby system.

For example, you can set the property java.naming.security.authentication to allow user
credentials to be encrypted on the network if the provider supports it. You can also
specify that SSL be used with LDAP (LDAPS).

User-defined class

Set derby.authentication.provider to the full name of a class that implements the public
interface org.apache.derby.authentication.UserAuthenticator.

By writing your own class that fulfills some minimal requirements, you can hook Derby
up to an external authentication service other than LDAP. To do so, specify an external

Java DB Developer's Guide

96

authentication service by setting the property derby.authentication.provider to a
class name that you want Derby to load at startup.

The class that provides the external authentication service must implement the public
interface org.apache.derby.authentication.UserAuthenticator and throw exceptions of the
type java.sql.SQLException where appropriate.

Using a user-defined class makes Derby adaptable to various naming and directory
services.

Example of setting a user-defined class:

A very simple example of a class that implements the
org.apache.derby.authentication.UserAuthenticator interface.

import org.apache.derby.authentication.UserAuthenticator;
import java.io.FileInputStream;
import java.util.Properties;
import java.sql.SQLException;
/**
 * A simple example of a specialized Authentication scheme.
 * The system property 'derby.connection.requireAuthentication'
 * must be set
 * to true and 'derby.authentication.provider' must
 * contain the full class name of the overriden authentication
 * scheme, i.e., the name of this class.
 *
 * @see org.apache.derby.authentication.UserAuthenticator
 */

public class MyAuthenticationSchemeImpl implements
UserAuthenticator {
 private static final String USERS_CONFIG_FILE = "myUsers.cfg";
 private static Properties usersConfig;

 // Constructor
 // We get passed some Users properties if the
 //authentication service could not set them as
 //part of System properties.
 //
 public MyAuthenticationSchemeImpl() {
 }
 /* static block where we load the users definition from a
users configuration file.*/

 static {
 /* load users config file as Java properties
 File must be in the same directory where
 Derby gets started.
 (otherwise full path must be specified) */
 FileInputStream in = null;
 usersConfig = new Properties();
 try {
 in = new FileInputStream(USERS_CONFIG_FILE);
 usersConfig.load(in);
 in.close();
 } catch (java.io.IOException ie) {
 // No Config file. Raise error message
 System.err.println(
 "WARNING: Error during Users Config file
retrieval");
 System.err.println("Exception: " + ie);
 }
 }
 /**
 * Authenticate the passed-in user's credentials.
 * A more complex class could make calls
 * to any external users directory.
 *

Java DB Developer's Guide

97

 * @param userName The user's name
 * @param userPassword The user's password
 * @param databaseName The database
 * @param infoAdditional jdbc connection info.
 * @exception SQLException on failure
 */
 public boolean authenticateUser(String userName,
 String userPassword,
 String databaseName,
 Properties info)
 throws SQLException
 {
 /* Specific Authentication scheme logic.
 If user has been authenticated, then simply return.
 If user name and/or password are invalid,
 then raise the appropriate exception.

 This example allows only users defined in the
 users config properties object.

 Check if the passed-in user has been defined for the system.
 We expect to find and match the property corresponding to
 the credentials passed in. */
 if (userName == null)
 // We do not tolerate 'guest' user for now.
 return false;
 //
 // Check if user exists in our users config (file)
 // properties set.
 // If we did not find the user in the users config set, then
 // try to find if the user is defined as a System property.
 //
 String actualUserPassword;
 actualUserPassword = usersConfig.getProperty(userName);
 if (actualUserPassword == null)
 actualUserPassword = System.getProperty(userName);
 if (actualUserPassword == null)
 // no such passed-in user found
 return false;
 // check if the password matches
 if (!actualUserPassword.equals(userPassword))
 return false;
 // Now, check if the user is a valid user of the database
 if (databaseName != null)
 {
 /* if database users restriction lists present, then check
 if there is one for this database and if so,
 check if the user is a valid one of that database.
 For this example, the only user we authorize in database
 DarkSide is user 'DarthVader'. This is the only database
 users restriction list we have for this example.
 We authorize any valid (login) user to access the
 OTHER databases in the system.
 Note that database users ACLs could be set in the same
 properties file or a separate one and implemented as you
 wish. */
 //
 if (databaseName.equals("DarkSide")) {
 // check if user is a valid one.
 if (!userName.equals("DarthVader"))
 // This user is not a valid one of the passed-in
 return false;
 }
 }
 // The user is a valid one in this database
 return true;
 }
}

Java DB Developer's Guide

98

Built-in Derby users

Derby provides a simple, built-in repository of user names and passwords.

To use the built-in repository, set derby.authentication.provider to BUILTIN. Using built-in
users is an alternative to using an external directory service such as LDAP.

derby.authentication.provider=BUILTIN

You can create user names and passwords for Derby users by specifying them with the
derby.user.UserName property.

Note: These user names are case-sensitive for user authentication. User names are
SQL92Identifiers. Delimited identifiers are allowed:

derby.user."FRed"=java

Note: For passwords, it is a good idea not to use words that would be easily guessed,
such as a login name or simple words or numbers. A password should be a mix of
numbers and upper- and lowercase letters.
Database-level properties

When you create users with database-level properties, those users are available to the
specified database only.

You set the property once for each user. To delete a user, set that user's password to
null.

-- adding the user sa with password 'derbypass'
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.sa', 'derbypass')
-- adding the user mary with password 'little7xylamb'
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.mary', 'little7xylamb')
-- removing mary by setting password to null
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.mary', null)

System-level properties

When you create users with system-level properties, those users are available to all
databases in the system.

You set the value of this system-wide property once for each user, so you can set it
several times. To delete a user, remove that user from the file.

You can define this property in the usual ways -- typically in the derby.properties file. For
more information about setting properties, see Working with Derby properties.

Here is a sample excerpt from the derby.properties file:

Users definition
#
derby.user.sa=derbypass
derby.user.mary=little7xylamb

List of user authentication properties

This table summarizes the various properties related to user authentication.

Table 11. User authentication properties

Property Name Use

derby.connection.requireAuthentication Turns on user authentication.

Java DB Developer's Guide

99

Property Name Use

derby.authentication.provider Specifies the kind of user
authentication to use.

derby.authentication.server For LDAP user authentication,
specifies the location of the server.

derby.authentication.ldap.searchAuthDN,
derby.authentication.ldap.searchAuthPW,
derby.authentication.ldap.searchFilter, and
derby.authentication.ldap.searchBase

Configures the way that DN searches
are performed.

derby.user.UserName Creates a user name and password for
the built-in user repository inDerby.

java.naming.* JNDI properties. See Appendix A
in the JNDI API reference for more
information about these properties.

Programming applications for Derby user authentication

This section discusses programming user authentication into applications for use with
Derby.

Programming the application to provide the user and password

In the DriverManager.getConnection call, an application can provide the user name and
password in the following ways.

• Separately as arguments to the following signature of the method:
getConnection(String url, String user, String password)

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "mary", "little7xylamb");

• As attributes to the database connection URL

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB;user=mary;password=little7xylamb");

• By setting the user and password properties in a Properties object as with other
connection URL attributes

Properties p = new Properties();
p.put("user", "mary");
p.put("password", "little7xylamb");
Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", p);

Note: The password is not encrypted. When you are using Derby in the context of a
server framework, the framework should be responsible for encrypting the password
across the network. If your framework does not encrypt the password, consider using
SSL.

For information about the treatment of user names within the Derby system, see Users
and authorization identifiers.

Login failure exceptions with user authentication

If user authentication is turned on and a valid user name and password are not provided,
SQLException 08004 is raised.

ERROR 08004: Connection refused : Invalid authentication.

Java DB Developer's Guide

100

Users and authorization identifiers
User names within the Derby system are known as authorization identifiers. The
authorization identifier is a string that represents the name of the user, if one was
provided in the connection request.

For example, the built-in function CURRENT_USER returns the authorization identifier for
the current user.

Once the authorization identifier is passed to the Derby system, it becomes an
SQL92Identifier. SQL92Identifiers-the kind of identifiers that represent database
objects such as tables and columns-are case-insensitive (they are converted to all
caps) unless delimited with double quotes, are limited to 128 characters, and have other
limitations.

User names must be valid authorization identifiers even if user authentication is turned
off, and even if all users are allowed access to all databases.

For more information about SQL92Identifiers, see the Java DB Reference Manual.

Authorization identifiers, user authentication, and user authorization

When working with both user authentication and user authorization, you need to
understand how user names are treated by each system.

If an external authentication system is used, the conversion of the user's name to an
authorization identifier does not happen until after authentication has occurred but before
user authorization. Imagine, for example, a user named Fred.

• Within the user authentication system, Fred is known as FRed. Your external user
authorization service is case-sensitive, so Fred must always type his name that
way.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "FRed", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-insensitive
authorization identifier. Fred is known as FRED.

• When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, FRED (which you can type as FRED,
FREd, or fred, since the system automatically converts it to all-uppercase).

derby.fullAccessUsers=sa,FRED,mary

Let's take a second example, where Fred has a slightly different name within the user
authentication system.

• Within the user authentication system, Fred is known as Fred!. You must now put
double quotes around the name, because it is not a valid SQL92Identifier.
(Derby knows to remove the double quotes when passing the name to the external
authentication system.)

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "\"Fred!\"", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-sensitive
authorization identifier. Fred is known as Fred!.

• When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, "Fred!" (which you must always delimit
with double quotation marks).

derby.fullAccessUsers=sa,"Fred!",manager

Java DB Developer's Guide

101

As shown in the first example, your external authentication system may be
case-sensitive, whereas the authorization identifier within Derby may not be. If your
authentication system allows two distinct users whose names differ by case, delimit all
user names within the connection request to make all user names case-sensitive within
the Derby system. In addition, you must also delimit user names that do not conform to
SQL92Identifier rules with double quotes.

Database owner

The term database owner refers to the current authorization identifier when the database
is created, that is, the user creating the database. If you enable or plan to enable SQL
authorization, controlling the identity of the database owner becomes important.

When a database is created, the database owner of that database gets implicitly
set to the authorization identifier used in the connect operation which creates the
database, for example by supplying the URL attribute "user". Note that this applies
even if authentication is not (yet) enabled. In SQL, the built-in functions USER and the
equivalent CURRENT_USER return the current authorization identifier.

If the database is created without supplying a user (only possible if authentication is not
enabled), the database owner gets set to the default authorization identifier, "APP", which
is also the name of the default schema, see the section "SET SCHEMA statement" in the
Java DB Reference Manual.

The database owner has automatic SQL level permissions when SQL authorization is
enabled, see more about this in User authorizations.

To further enhance security, when bothauthentication and SQL authorization are enabled
for a database, Derby restricts some special powers to the database owner: only the
database owner is allowed to shut down the database, to encrypt or reencrypt the
database or to perform a full upgrade of it. These powers can not be delegated.

Attention: There is currently no way of changing the database owner once the database
is created. This means that if you plan to run with SQL authorization enabled, you should
make sure to create the database as the user you want to be the owner.

User names and schemas

User names can affect a user's default schema.

For information about user names and schemas, see "SET SCHEMA statement" in the
Java DB Reference Manual.

Exceptions when using authorization identifiers

Specifying an invalid authorization identifier in a database user authorization property
raises an exception. Specifying an invalid authorization identifier in a connection request
raises an exception.

User authorizations
When you specify user authorizations, Derby verifies that a user has been granted
permission to access a system, database, object, or SQL action.

There are two types of user authorization in Derby, connection authorization and SQL
authorization. Connection authorization specifies the access that users have to connect
to a system or database. SQL authorization controls the permissions that users have on

Java DB Developer's Guide

102

database objects or for SQL actions. You can set the user authorization properties in
Derby as system-level properties or database-level properties.

Set system-level user authorizations when you are developing applications, or when
you want to specify a secure default authorization for all users to connect to all of the
databases in the system.

There are several properties that you can set to control database-level user
authorizations. Some of the properties are general properties that set the access mode
for all users. Other properties are user specific properties that set the type of access for
specific user IDs.

The properties that affect authorization are:
• The derby.database.defaultConnectionMode property controls the

default access mode. Use the derby.database.defaultConnectionMode
property to specify the default connection access that users have
when they connect to the database. If you do not explicitly set the
derby.database.defaultConnectionMode property, the default user
authorization for a database is fullAccess, which is read-write access.

• The derby.database.fullAccessUsers and
derby.database.readOnlyAccessUsers properties are user specific
properties. Use these properties to specify the user IDs that have read-write access
and read-only access to a database.

• The derby.database.sqlAuthorization property enables SQL
standard authorization. Use the derby.database.sqlAuthorization
property to specify if object owners can grant and revoke permission for
users to perform SQL actions on database objects. The default setting for
the derby.database.sqlAuthorization property is FALSE. When the
derby.database.sqlAuthorization property is set to TRUE, object owners
can use the GRANT and REVOKE SQL statements to set the user permissions for
specific database objects or for specific SQL actions.

If you do not specify the user authorizations for a specific user ID, the user ID inherits
whatever authorization is set as the default user authorization for the database.

Tip: If you set the derby.database.defaultConnectionMode property to
noAccess or readOnlyAccess, you should allow at least one user read-write access.
Otherwise, depending on the default connection authorization you specify, you will
configure the database so that it cannot be accessed or changed.

How user authorization properties work together
The derby.database.defaultConnectionMode property and the
derby.database.sqlAuthorization property work together. The default settings
for these properties allow anyone to access and drop the database objects that you
create. You can change the default access mode by specifying different settings for these
properties.

• When the derby.database.sqlAuthorization property is FALSE, the
ability to read from or write to database objects is determined by the setting
for the derby.database.defaultConnectionMode property. If the
derby.database.defaultConnectionMode property is set to readOnlyAccess,
users can access all of the database objects but they cannot update or drop the
objects.

• When the derby.database.sqlAuthorization property is TRUE, the ability
to read from or write to database objects is further restricted to the owner of the
database objects. The owner must grant permission for others to access the
database objects. No one but the owner of an object or the database owner can
drop the object.

• The access mode specified for the derby.database.defaultConnectionMode
property overrides the permissions that are granted by the owner of a database

Java DB Developer's Guide

103

object. For example, if a user is granted INSERT privileges on a table but the user
only has read-only connection authorization, the user cannot insert data into the
table.

Changes to connection authorization settings

Connection authorization properties are fixed for the duration of a connection. If you
change the connection authorization properties during a connection, those changes are
not in affect until you establish a new connection.

Setting the default connection access mode

Use the derby.database.defaultConnectionMode property to specify the default
type of access that users have when they connect to the database.

The valid settings for the derby.database.defaultConnectionMode property are:
• noAccess
• readOnlyAccess
• fullAccess

If you do not specify a setting for the derby.database.defaultConnectionMode
property, the default access setting is fullAccess.

To set the default connection access mode, specify the access in a CALL statement. For
example:

To specify read-write access for the system administrator userID sa and the read-only
as the default access for anyone else who connects to the database, issue these CALL
statements:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'sa')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode',
 'readOnlyAccess')

To specify read-write access for the user ID Fred and no access for other users, issue
these CALL statements:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'Fred')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode',
 'noAccess')

Setting access for individual users

Use the derby.database.fullAccessUsers and
derby.database.readOnlyAccessUsers properties to specify the user IDs that
have read-write access and read-only access to a database.

You can specify multiple user IDs by using a comma-separated list, with no spaces
between the comma and the next user ID.

To set the user authorizations for individual users, specify the access in a CALL
statement. For example:

To specify read-write access for the system administrator user ID sa and for the user ID
maria, issue this CALL statement:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(

Java DB Developer's Guide

104

 'derby.database.fullAccessUsers', 'sa,maria')

To specify read-only access for a guest user ID and for Fred, issue this CALL statement:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.readOnlyAccessUsers', 'guest,Fred')

To specify read-write access for the user ID "Elena!", use delimited identifiers for the user
ID. For example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', '"Elena!"')

Read-only and full access permissions

The actions that users can perform on a Derby database is determined by the type of
access that users have to the database objects.

The following table lists the actions that users can perform based on the type of access
that a user is granted on a database. These actions apply to regular databases, source
databases, and target databases.
Table 12. Actions that are authorized by type of access

Action
Read-only
access Full access

Executing SELECT statements X X

Reading database properties X X

Loading database classes from
jar files

X X

Executing INSERT, UPDATE, or
DELETE statements

 X

Executing DDL statements X

Adding or replacing jar files X

Setting database properties X

User authorization exceptions

SQL exceptions are returned when errors occur with user authorizations.

Derby validates the database properties when you set the properties. An exception is
returned if you specify an invalid value when you set these properties.

If a user attempts to connect to a database but is not authorized to connect to that
database, the SQLException 04501 is returned.

If a user with read-only access attempts to write to a database, the SQLException 08004
- connection refused is returned.

Setting the SQL standard authorization mode

Use the derby.database.sqlAuthorization property to enable SQL standard
authorization.

The derby.database.sqlAuthorization property controls the ability for object
owners to grant and revoke permission for users to perform actions on database objects.
It also controls the ability for users to create, set, and drop roles.

The valid settings for the derby.database.sqlAuthorization property are:

Java DB Developer's Guide

105

• TRUE
• FALSE

The default setting for the derby.database.sqlAuthorization property is FALSE.

The derby.database.sqlAuthorization property is usable only if the property
derby.connection.requireAuthentication is also set to true, since SQL
authorization is of no value unless authentication is also enabled.

After you set the derby.database.sqlAuthorization property to TRUE, you
cannot set the property back to FALSE.

You can set the derby.database.sqlAuthorization property as a system property
or as a database property. If you set this property as a system property before you create
the databases, all new databases will automatically have SQL authorization enabled. If
the databases already exists, you can set this property only as a database property.

To enable SQL standard authorization for the entire system, set the
derby.database.sqlAuthorization property as a system property:

derby.database.sqlAuthorization=true

To enable SQL standard authorization for a specific database, set the
derby.database.sqlAuthorization property as a database property:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.sqlAuthorization',
 'true')

Using SQL standard authorization

When the SQL standard authorization mode is enabled, object owners can use the
GRANT and REVOKE SQL statements to set the user permissions for specific database
objects or for specific SQL actions. They can also use roles to administer privileges.

The SQL standard authorization mode is a SQL2003 compatible access control
system. You enable the SQL standard authorization mode by setting the
derby.database.sqlAuthorization property to TRUE.

While Derby has a simpler database access mode which can be set to provide users with
full, read-only, or no access authorization, this simpler access mode is less appropriate
for most client-server database configurations. When users or applications issue SQL
statements directly against the database, the Derby SQL authorization mode provides a
more precise mechanism to limit the actions that users can take on the database.

The GRANT statement is used to grant specific permissions to users or to roles, or to
grant roles to users or to roles. The REVOKE statement is used to revoke permissions
and role grants. The grant and revoke privileges are:

• DELETE
• EXECUTE
• INSERT
• SELECT
• REFERENCES
• TRIGGER
• UPDATE

When a table, view, function, or procedure is created, the person that creates the object
is referred to as the owner of the object. Only the object owner and the database owner
have full privileges on the object. No other users have privileges on the object until the
object owner grants privileges to them.

Public and individual user privileges

Java DB Developer's Guide

106

The object owner can grant and revoke privileges for specific users, for specific roles,
or for all users. The keyword PUBLIC is used to specify all users. When PUBLIC is
specified, the privileges affect all current and future users. The privileges granted and
revoked to PUBLIC and to individual users or roles are independent. For example, a
SELECT privilege on table t is granted to both PUBLIC and to the user harry. The
SELECT privilege is later revoked from user harry, but user harry has access to table
t through the PUBLIC privilege.

Exception: When you create a view, trigger, or constraint, Derby first checks to
determine if you have the required privileges at the user level. If you have the user-level
privileges, the object is created and is dependent on that user-level privilege. If you do
not have the required privileges at the user-level, Derby checks to determine if you have
the required privileges at the PUBLIC level. If you have the PUBLIC level privileges,
the object is created and is dependent on that PUBLIC level privilege. After the object
is created, if the privilege on which the object depends on is revoked, the object is
automatically dropped. Derby does not try to determine if you have other privileges that
can replace the privileges that are being revoked.
Example 1

User zhi creates table t1 and grants SELECT privileges to user harry on table
t1. User zhi grants SELECT privileges to PUBLIC on table t1. User harry creates
view v1 with the statement SELECT * from zhi.t1. The view depends on the
user-level privilege that user harry has on t1. Subsequently, user zhi revokes
SELECT privileges from user harry on table t1. As a result, the view harry.v1 is
dropped.

Example 2
User anita creates table t1 and grants SELECT privileges to PUBLIC. User harry
creates view v1 with the statement SELECT * from anita.t1. The view depends
on the PUBLIC level privilege that user harry has on t1 since user harry does
not have user-level privileges on table t1 when he creates the view harry.v1.
Subsequently, user anita grants SELECT privileges to user harry on table
anita.t1. The view harry.v1 continues to depend on PUBLIC level privilege that
user harry has on t1. When user anita revokes SELECT privileges from PUBLIC
on table t1, the view harry.v1 is dropped.

Permissions on views, triggers, and constraints
Views, triggers, and constraints operate with the permissions of the owner of the view,
trigger, or constraint. For example, user anita wants to create a view using the following
statement:

CREATE VIEW s.v(vc1,vc2,vc3)
 AS SELECT t1.c1,t1.c2,f(t1.c3)
 FROM t1 JOIN t2 ON t1.c1 = t2.c1
 WHERE t2.c2 = 5

User anita needs the following permissions to create the view:
• Ownership of the schema s, so that she can create something in the schema
• Ownership of the table t1, so that she can allow others to see columns in the table
• SELECT permission on column t2.c1 and column t2.c2
• EXECUTE permission on function f

When the view is created, only user anita has SELECT permission on it. User anita
can grant SELECT permission on any or all of the columns of view s.v to anyone, even
to users that do not have SELECT permission on t1 or t2, or EXECUTE permission
on f. User anita grants SELECT permission on view s.v to user harry. When user
harry issues a SELECT statement on the view s.v, Derby checks to determine if user
harry has SELECT permission on views.v. Derby does not check to determine if user
harry has SELECT permission on t1, or t2, or EXECUTE permission on f.

Java DB Developer's Guide

107

Permissions on triggers and constraints work the same way as permissions on views.
When a view, trigger, or constraint is created, Derby checks that the owner has the
required permissions. Other users do not need to have those permissions to perform
actions on a view, trigger, or constraint.

If the required permissions are revoked from the owner of a view, trigger, or constraint,
the object is dropped as part of the REVOKE statement.

See the Java DB Reference Manual for more information on the GRANT and REVOKE
statements.

Using SQL roles

When the SQL standard authorization mode is enabled, object owners can use the SQL
roles facility to administer privileges.

SQL roles are useful for administering privileges when a database has many users.
Roles provide a more powerful way to grant privileges to users' sessions than to grant
privileges to each user of the database, which easily becomes tedious and error-prone
when many users are involved. Roles do not in and of themselves give better database
security, but used correctly, they facilitate better security. Only the database owner can
create, grant, revoke, and drop roles. However, object owners can grant and revoke
privileges for those objects to and from roles, as well as to and from individual users and
PUBLIC (all users).

Note: Derby implements a subset of SQL roles. The fact that only the database owner
can create, grant, revoke, and drop roles is an implementation restriction.

Creating and granting roles

Roles are available only when SQL authorization mode is enabled (that is, when the
property derby.database.sqlAuthorization is set to TRUE).

Old databases must be (hard) upgraded to at least Release 10.5 before roles can be
used.

If SQL authorization mode is enabled, the database owner can use the CREATE ROLE
statement to create roles. The database owner can then use the GRANT statement to
grant a role to one or more users, to PUBLIC, or to another role.

A role A contains another role B if role B is granted to role A, or is contained in a role C
granted to role A. Privileges granted to a contained role are inherited by the containing
roles. So the set of privileges identified by role A is the union of the privileges granted to
role A and the privileges granted to any contained roles of role A.

For example, suppose the database owner issued the following statements:

 create role reader;
 create role updater;
 create role taskLeaderA;
 create role taskLeaderB;
 create role projectLeader;
 grant reader to updater;
 grant updater to taskLeaderA;
 grant updater to taskLeaderB;
 grant taskLeaderA to projectLeader;
 grant taskLeaderB to projectLeader;

The roles would then have the following containment relationships:

 reader
 |
 v
 updater
 / \

Java DB Developer's Guide

108

 taskLeaderA taskLeaderB
 \ /
 projectLeader

In this case, the projectLeader role contains all the other roles and has all their
privileges. If the database owner then revokes updater from taskLeaderA,
projectLeader still contains that role through taskLeaderB.

The SYSCS_DIAG.CONTAINED_ROLES diagnostic table function can be used to
determine the set of contained roles for a role.

Cycles are not permitted in role grants. That is, if a role contains another role, you cannot
grant the container role to the contained role. For example, the following statement would
not be permitted:

grant projectLeader to updater;

Setting roles

When a user first connects to Derby, no role is set, and the CURRENT_ROLE function
returns null. During a session, the user can call the SET ROLE statement to set the
current role for that session. The role can be any role that has been granted to the
session's current user or to PUBLIC. To unset the current role, call SET ROLE with an
argument of NONE. At any time during a session, there is always a current user, but
there is a current role only if SET ROLE has been called with an argument other than
NONE. If a current role is not set, the session has only the privileges granted to the user
directly or to PUBLIC.

For example, if the database owner created and granted the roles shown in the previous
session, a user would have to issue a SET ROLE statement to have them take effect.
Suppose a user issued the following statement:

SET ROLE taskLeaderA;

Assuming that the database owner had granted the taskLeaderA role to the user, the
user would be allowed to set the role as shown and would have all the privileges granted
to the taskLeaderA, updater, and reader roles.

To retrieve the current role identifier in SQL, call the CURRENT_ROLE function.

Within stored procedures and functions that contain SQL, the current role is on the
authorization stack. Initially, inside a nested connection, the current role is set to that of
the calling context. Upon return from the stored procedure or function, the authorization
stack is popped, so the current role of the calling context is not affected by any setting
of the role inside the called procedure or function. If the stored procedure opens more
than one nested connection, these all share the same (stacked) current role state. Any
dynamic result set passed out of a stored procedure sees the current role of the nested
context.

Granting privileges to roles

Once a role has been created, both the database owner and the object owner can
grant privileges on tables and routines to that role. You can grant the same privileges
to roles that you can grant to users. Granting a privilege to a role implicitly grants
privileges to all roles that contain that role. For example, if you grant delete privileges
on a table to updater, every user in the updater, taskLeaderA, taskLeaderB,
and projectLeader role will also have delete privileges on that table, but users in the
reader role will not.

Revoking privileges from a role

Either the database owner or the object owner can revoke privileges from a role.

Java DB Developer's Guide

109

When a privilege is revoked from a role A, that privilege is no longer held by role A,
unless A otherwise inherits that privilege from a contained role.

If a privilege to an object is revoked from role A, a session will lose that privilege if it has
a current role set to A or a role that contains A, unless one or more of the following is
true:

• The privilege is granted directly to the current user
• The privilege is granted to PUBLIC
• The privilege is also granted to another role B in the current role's set of contained

roles
• The session's current user is the database owner or the object owner

Revoking roles

The database owner can use the REVOKE statement to revoke a role from a user, from
PUBLIC, or from another role.

When a role is revoked from a user, that session can no longer keep that role, nor can it
take on that role in a SET ROLE statement, unless the role is also granted to PUBLIC.
If that role is the current role of an existing session, the current privileges of the session
lose any extra privileges obtained through setting that role.

The default drop behavior is CASCADE. Therefore, all persistent objects (constraints,
views and triggers) that rely on that role are dropped. Although there may be other
ways of fulfilling that privilege at the time of the revoke, any dependent objects are still
dropped. This is an implementation limitation. Any prepared statement that is potentially
affected will be checked again on the next execute. A result set that depends on a role
will remain open even if that role is revoked from a user.

When a role is revoked from a role, the default drop behavior is also CASCADE.
Suppose you revoke role A from role B. Revoking the role will have the effect of revoking
all additional applicable privileges obtained through A from B. Roles that contain B will
also lose those privileges, unless A is still contained in some other role C granted to B,
or the privileges come through some other role. See Creating and granting roles for an
example.

Dropping roles

Only the database owner can drop a role. To drop a role, use the DROP ROLE
statement.

Dropping a role effectively revokes all grants of this role to users and other roles.

Further information
For details on the following statements, functions, and system table related to roles, see
the Java DB Reference Manual.

• CREATE ROLE statement
• SET ROLE statement
• DROP ROLE statement
• GRANT statement
• REVOKE statement
• CURRENT_ROLE function
• SYSCS_DIAG.CONTAINED_ROLES table function
• SYSROLES system table

SQL standard authorization exceptions

SQL exceptions are returned when errors occur with SQL authorization.

The following errors can result from the CREATE ROLE statement:

Java DB Developer's Guide

110

• You cannot create a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

• You cannot create a role if a role with that name already exists. An attempt to do so
raises the SQLException X0Y68.

• You cannot create a role name if there is a user by that name. An attempt to create
a role name that conflicts with an existing user name raises the SQLException
X0Y68.

• A role name cannot start with the prefix SYS (after case normalization). Use of the
prefix SYS raises the SQLException 4293A.

• You cannot create a role with the name PUBLIC (after case normalization). PUBLIC
is a reserved authorization identifier. An attempt to create a role with the name
PUBLIC raises SQLException 4251B.

The following errors can result from the DROP ROLE statement:

• You cannot drop a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

• You cannot drop a role that does not exist. An attempt to do so raises the
SQLException 0P000.

The following errors can result from the SET ROLE statement:

• You cannot set a role if you are not the database owner. An attempt to do so raises
the SQLException 4251A.

• You cannot set a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot set a role when a transaction is in progress. An attempt to do so raises
the SQLException 25001.

• You cannot use NONE or a malformed identifier as a string or ? argument to SET
ROLE. An attempt to do so raises the SQLException XCXA0.

The following errors can result from the GRANT statement:

• You cannot grant a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

• You cannot grant a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot grant the role "PUBLIC". An attempt to do so raises the SQLException
4251B.

• You cannot grant a role if doing so would create a circularity by granting a container
role to a contained role. An attempt to do so raises the SQLException 4251C.

The following errors can result from the REVOKE statement:

• You cannot revoke a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

• You cannot revoke a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot revoke the role "PUBLIC". An attempt to do so raises the SQLException
4251B.

For all statements, an attempt to specify an identifier argument more than 128 characters
long raises the SQLException 42622.

Encrypting databases on disk
Derby provides a way for you to encrypt your data on disk.

Typically, database systems encrypt and decrypt data in transport over the network,
using industry-standard systems. This system works well for client/server databases;

Java DB Developer's Guide

111

the server is assumed to be in a trusted, safe environment, managed by a system
administrator. In addition, the recipient of the data is trusted and should be capable of
protecting the data. The only risk comes when transporting data over the wire, and data
encryption happens during network transport only.

However, Derby databases are platform-independent files that are designed to be easily
shared in a number of ways, including transport over the Internet. Recipients of the data
might not know how, or might not have the means, to properly protect the data.

This data encryption feature provides the ability to store user data in an encrypted form.
The user who boots the database must provide a boot password.

Note: Jar files stored in the database are not encrypted.

Requirements for Derby encryption

Derby supports disk encryption and requires an encryption provider. An
encryption provider implements the Java cryptography concepts. The JRE
for J2SE 1.4 and higher includes Java Cryptographic Extensions (JCE
http://java.sun.com/products/jce/index.html) and one or more default encryption
providers.

Working with encryption

This section describes using encryption in Derby.

Encrypting databases on creation

You configure a Derby database for encryption when you create the database by
specifying the dataEncryption=true attribute on the connection URL.

The Java Runtime Environment (JRE) determines the default encryption provider, as
follows:

• For J2SE/J2EE 1.4 or higher, the JRE's provider is the default.
• If your environment for some reason does not include a provider, it must be

specified.

You have the option of specifying an alternate encryption provider. The default encryption
algorithm is DES, but you have the option of specifying an alternate algorithm as well.
See Specifying an alternate encryption provider

Encrypting an existing unencrypted database

You can encrypt an unencrypted Derby database by specifying attributes on the
connection URL when you boot the database. The attributes that you specify depend on
how you want the database encrypted.

• If the database is configured with log archival, you must disable log archival and
perform a shutdown before you can encrypt the database.

• If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted.

When you encrypt an existing, unencrypted database, you can specify whether the
database should be encrypted using a boot password or an external encryption key. You
can also specify the encryptionProvider attribute and the encryptionAlgorithm attribute on
the connection URL. The database is configure with the specified encryption attributes
and all of the existing data in the database is encrypted.

Encrypting a database is a time consuming process because it involves encrypting all
of the existing data in the database. If the process is interrupted before completion, all
the changes are rolled back the next time that the database is booted. If the interruption

http://java.sun.com/products/jce/index.html

Java DB Developer's Guide

112

occurs immediately after the database is encrypted but before the connection is returned
to the application, you might not be able to boot the database without the boot password
or external encryption key. In these rare circumstances, you should try to boot the
database with the boot password or the external encryption key.

Recommendation: Ensure that you have enough free disk space before you encrypt
a database. In addition to the disk space required for the current size of the database,
temporary disk space is required to store the old version of the data to restore the
database back to it's original state if the encryption is interrupted or returns errors. All of
the temporary disk space is released back to the operating system after the database is
encrypted.

To encrypt an existing unencrypted database:

1. Specify the dataEncryption=true attribute and either the encryptionKey attribute or
the bootPassword attribute in a URL and boot the database.

For example, to encrypt the salesdb database with the boot password
abc1234xyz, specify the following attributes in the URL:

jdbc:derby:salesdb;dataEncryption=true;bootPassword=abc1234xyz

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied as well, since encryption is a restricted operation.

If you disabled log archival before you encrypted the database, create a new
backup of the database after the database is encrypted.

Creating the boot password

When you encrypt a database you must also specify a boot password, which is an
alpha-numeric string used to generate the encryption key.

The length of the encryption key depends on the algorithm used:

• AES (128, 192, and 256 bits)
• DES (the default) (56 bits)
• DESede (168 bits)
• All other algorithms (128 bits)

Note: The boot password should have at least as many characters as number of bytes
in the encryption key (56 bits=8 bytes, 168 bits=24 bytes, 128 bits=16 bytes). The
minimum number of characters for the boot password allowed by Derby is eight.

It is a good idea not to use words that would be easily guessed, such as a login name
or simple words or numbers. A bootPassword, like any password, should be a mix of
numbers and upper- and lowercase letters.

You turn on and configure encryption and specify the corresponding boot password on
the connection URL for a database when you create it:

jdbc:derby:encryptionDB1;create=true;dataEncryption=true;
 bootPassword=clo760uds2caPe

Note: If you lose the bootPassword and the database is not currently booted, you will not
be able to connect to the database anymore. (If you know the current bootPassword, you
can change it. See Encrypting databases with a new key.)
Specifying an alternate encryption provider:

You can specify an alternate provider when you create the database with the
encryptionProvider=providerName attribute.

You must specify the full package and class name of the provider, and you must also add
the libraries to the application's classpath.

Java DB Developer's Guide

113

-- using the the provider library jce_jdk13-10b4.zip|
-- available from www.bouncycastle.org
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=org.bouncycastle.jce.provider.BouncyCastleProvider;
encryptionAlgorithm=DES/CBC/NoPadding

-- using a provider
-- available from
-- http://jcewww.iaik.tu-graz.ac.at/download.html
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=iaik.security.provider.IAIK;encryptionAlgorithm=
DES/CBC/NoPadding

Specifying an alternate encryption algorithm:

Derby supports the following encryption algorithms.

• DES (the default)
• DESede (also known as triple DES)
• Any encryption algorithm that fulfills the following requirements:

• It is symmetric
• It is a block cipher, with a block size of 8 bytes
• It uses the NoPadding padding scheme
• Its secret key can be represented as an arbitrary byte array
• It requires exactly one initialization parameter, an initialization vector of type

javax.crypto.spec.IvParameterSpec
• It can use javax.crypto.spec.SecretKeySpec to represent its key

For example, the algorithm Blowfish implemented in the Sun JCE package fulfills
these requirements.

By Java convention, an encryption algorithm is specified like this:

algorithmName/feedbackMode/padding

The only feedback modes allowed are:

• CBC
• CFB
• ECB
• OFB

The only padding mode allowed is NoPadding.

By default, Derby uses the DES algorithm of DES/CBC/NoPadding.

To specify an alternate encryption algorithm when you create a database, use the
encryptionAlgorithm=algorithm attribute. If the algorithm you specify is not supported by
the provider you have specified, Derby throws an exception.

To specify the AES encryption algorithm with a key length other than the default of 128,
specify the encryptionKeyLength attribute. For example, you might specify the following
connection attributes:

jdbc:derby:encdbcbc_192;create=true;dataEncryption=true;
encryptionKeyLength=192;encryptionAlgorithm=AES/CBC/NoPadding;
bootPassword=Thursday

To use the AES algorithm with a key length of 192 or 256, you must use unrestricted
policy jar files for your JRE. You can obtain these files from your Java provider. They
might have a name like "Java Cryptography Extension (JCE) Unlimited Strength

Java DB Developer's Guide

114

Jurisdiction Policy Files." If you specify a non-default key length using the default policy
jar files, a Java exception occurs.

Encrypting databases with a new key

You can apply a new encryption key to a Derby database by specifying a new boot
password or a new external key.

Encrypting a database with a new encryption key is a time consuming process because
it involves encrypting all of the existing data in the database with the new encryption key.
If the process is interrupted before completion, all the changes are rolled back the next
time that the database is booted. If the interruption occurs immediately after the database
is encrypted with the new encryption key but before the connection is returned to the
application, you might not be able to boot the database with the old encryption key. In
these rare circumstances, you should try to boot the database with the new encryption
key.

Recommendation: Ensure that you have enough free disk space before you encrypt
a database with a new key. In addition to the disk space required for the current size
of the database, temporary disk space is required to store the old version of the data
to restore the database back to it's original state if the new encryption is interrupted or
returns errors. All of the temporary disk space is released back to the operating system
after the database is reconfigured to work with the new encryption key.

To encrypt a database with a new encryption key:

1. Use the type of encryption that is currently used to encrypt the database:
• To encrypt the database with a new boot password key, use the

newBootPassword attribute.
• To encrypt the database with a new external encryption key, use the

newEncryptionKey attribute.

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied, since reencryption is a restricted operation.

Encrypting databases with a new boot password:

You can apply a new boot password to a Derby database by specifying the
newBootPassword attribute on the connection URL when you boot the database.

• If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new boot password.

• If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new boot password.

• If the database is currently encrypted with an external encryption key, you should
use the newEncryptionKey attribute to encrypt the database.

When you use the newBootPassword attribute, a new encryption key is generated
internally by the engine and the key is protected using the new boot password. The
newly generated encryption key encrypts the database, including the existing data. You
cannot change the encryption provider or encryption algorithm when you apply a new
boot password.

To encrypt a database with a new boot password:

1. Specify the newBootPassword attribute in a URL and reboot the database.

For example, when the following URL is used when the salesdb database is
rebooted, the database is encrypted with the new encryption key, and is protected
by the password new1234xyz:

 jdbc:derby:salesdb;bootPassword=abc1234xyz;newBootPassword=new1234xyz

Java DB Developer's Guide

115

If authentication and SQL authorization are both enabled, the credentials of
the database owner must be supplied as well, since reencryption is a restricted
operation.

If you disabled log archival before you applied the new boot password, create a
new backup of the database after the database is reconfigured with the new boot
password.

Encrypting databases with a new external encryption key:

You can apply a new external encryption key to a Derby database by specifying the
newEncryptionKey attribute on the connection URL when you boot the database.

• If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new external encryption key.

• If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new encryption key.

• If the database is currently encrypted with a boot password , you should use the
newBootPassword attribute to encrypt the database.

To encrypt a database with a new external encryption key:

1. Specify the newEncryptionKey attribute in a URL and reboot the database.

For example, when the following URL is used when the salesdb database
is rebooted, the database is encrypted with the new encryption key
6862636465666768:

jdbc:derby:salesdb;encryptionKey=6162636465666768;newEncryptionKey=6862636465666768'

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied as well, since encryption is a restricted operation.

If you disabled log archival before you applied the new encryption key, create a new
backup of the database after the database is reconfigured with new the encryption
key.

Booting an encrypted database

If you create an encrypted database using the bootPassword attribute, you must specify
the boot password to reboot the database. If you create an encrypted database using the
encryptionKey attribute, you must specify the encryptionKey to reboot the database.

Encrypted databases cannot be booted automatically along with all other system
databases on system startup (see "derby.system.bootAll" in the Java DB Reference
Manual). Instead, you boot encrypted databases when you first connect to the database.

Booting a database with the bootPassword attribute
To access an encrypted database called wombat that was created with the boot
password clo760uds2caPe, use the following connection URL:

jdbc:derby:wombat;bootPassword=clo760uds2caPe

Booting a database with the encryptionKey attribute
To access an encrypted database called flintstone that was created with
the encryptionKey=c566bab9ee8b62a5ddb4d9229224c678 and with the
encryptionAlgorithm=AES/CBC/NoPadding, use the following connection URL:

jdbc:derby:flintstone;encryptionAlgorithm=AES/CBC/NoPadding;
encryptionKey=c566bab9ee8b62a5ddb4d9229224c678

After the database is booted, all connections can access the database without the boot
password. Only a connection that boots the database requires the key.

Java DB Developer's Guide

116

For example, the following connections would boot the database and require the boot
password or encryption key, depending on what mechanism was used to encrypt the
database originally:

• The first connection to the database in the JVM session
• The first connection to the database after the database has been explicitly shut

down
• The first connection to the database after the system has been shut down and then

rebooted

Note: The boot password and the encryption key are not meant to prevent unauthorized
connections to the database after the database is booted. To protect a database after it
has been booted, turn on user authentication (see Working with user authentication).

Signed jar files
In a Java 2 environment, Derby can detect digital signatures on jar files. When attempting
to load a class from a signed jar file stored in the database, Derby will verify the validity of
the signature.

Note: The Derby class loader only validates the integrity of the signed jar file and that
the certificate has not expired. Derby cannot ascertain whether the validity/identity
of declared signer is correct. To validate identity, use a Security Manager (i.e., an
implementation of java.lang.SecurityManager).

When loading classes from an application jar file in a Java 2 environment, Derby behaves
as follows:

• If the class is signed, Derby will:
• Verify that the jar was signed using a X.509 certificate (i.e., can be

represented by the class java.security.cert.X509Certificate). If not, throw an
exception.

• Verify that the digital signature matches the contents of the file. If not, throw an
exception.

• Check that the set of signing certificates are all valid for the current date and
time. If any certificate has expired or is not yet valid, throw an exception.

• Pass the array of certificates to the setSigners() method of
java.lang.ClassLoader. This allows security managers to obtain the
list of signers for a class (using java.lang.Class.getSigners) and
then validate the identity of the signers using the services of a Public Key
Infrastructure (PKI).

Note: Derby does not provide a security manager.

For more information about signed jar files, see the Java 2 specifications at
http://java.sun.com.

For more information about Java 2 security, go to http://java.sun.com/security/.

Notes on the Derby security features
TheDerby security model has some basic limitations.

You lock out non full-access users with database properties, which are stored in the
database (and in an encrypted database these properties are also encrypted). Note,
however, for a distributed/embedded system that a sophisticated user with the database
encryption key might be able to physically change those properties in the database files.

In addition, in the Derby system, it is not necessary to have a specific connection (or
permission to access a particular database) to shut down the system. Any authenticated
user can shut down the system.

Java DB Developer's Guide

117

Other security holes to think about are:

• JVM subversion, running the application under a home-grown JVM.
• Trolling for objects
• Class substitution, locating a class that has access to sensitive data and replacing it

with one that passes on information

User authentication and authorization examples
This section provides examples on using user authentication and authorization in Derby
in either a client/server environment or in an embedded environment.

User authentication example in a client/server environment

In this example, Derby is running in a user-designed application server.

Derby provides the user authentication, not the application server. The server is running
in a secure environment, the application server encrypts the passwords, and a database
administrator is available. The administrator configures security using system-level
properties in the derby.properties file and has protected this file with operating system
tools. Derby connects to an existing LDAP directory service within the enterprise to
authenticate users.

The default access mode for all databases is set to fullAccess (the default).

The derby.properties file for the server includes the following entries:

turn on user authentication
derby.connection.requireAuthentication=true
set the authentication provider to an external LDAP server
derby.authentication.provider=LDAP
the host name and port number of the LDAP server
derby.authentication.server=godfrey:389
the search base for user names
derby.authentication.ldap.searchBase=o=oakland.mycompany.com
explicitly show the access mode for databases (this is default)
derby.database.defaultConnectionMode=fullAccess

With these settings, all users must be authenticated by the LDAP server in order to
access any Derby databases.

The database administrator has determined that one database, accountingDB,
has additional security needs. Within a connection to that database, the database
administrator uses database-wide properties (which override properties set in the
derby.properties file) to limit access to this database. Only the users prez, cfo, and
numberCruncher have full (read-write) access to this database, and only clerk1 and
clerk2 have read-only access to this database. No other users can access the database.

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode', 'noAccess')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers',
 'prez,cfo,numberCruncher')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.readOnlyAccessUsers', 'clerk1,clerk2')

The database administrator then requires all current users to disconnect and re-connect.
These property changes do not go into effect for current connections. The database
administrator can force current users to reconnect by shutting down the database

Java DB Developer's Guide

118

User authentication and authorization client example

This example consists of a pair of programs, AuthExampleClient1.java and
AuthExampleClient2.java, which show how to turn on, use, and turn off user
authentication using Derby's built-in user authentication and user authorization using the
client driver.

This example uses one program to set properties and a second program to perform
database operations. A similar example that uses the embedded driver, in User
authentication and authorization embedded example, is a single long program. Either
example would work equally well in the other format.

See User authentication and SQL authorization client example for an example similar to
this one that uses SQL authorization.

The first program, AuthExampleClient1.java, does the following:

1. Creates a database named authClientDB, using the client driver.
2. Sets database properties that create users with different levels of access (read-only

and full access), require authentication, and set the default access level to no
access.

3. Closes the connection and shuts down the database.

The second program, AuthExampleClient2.java, does the following:

1. Tries to connect to the database without a username and password, raising an
exception.

2. Connects to the database as a user with read-only access; the connection
succeeds, but an attempt to create a table raises an exception.

3. Connects to the database as a user with full access; this user can create and
populate a table.

4. Removes the table.
5. Closes the connection and shuts down the database.

Make sure that the javac command is in your path, then compile the programs as
follows:

javac AuthExampleClient1.java

javac AuthExampleClient2.java

Before you run the programs, start the Derby Network Server as described in
step 2 of "Activity 4: Create and run a JDBC program using the client driver
and Network Server" in Getting Started with Java DB. When you run the
programs, make sure that %DERBY_HOME%\lib\derbyclient.jar (or
$DERBY_HOME/lib/derbyclient.jar) is in your classpath. For example, you might
use the following commands on a Windows system:

java -cp .;%DERBY_HOME%\lib\derbyclient.jar AuthExampleClient1

java -cp .;%DERBY_HOME%\lib\derbyclient.jar AuthExampleClient2

Source code for AuthExampleClient1.java

import java.sql.*;

public class AuthExampleClient1 {

 public static void main(String[] args) {

 String driver = "org.apache.derby.jdbc.ClientDriver";
 String dbName="authClientDB";
 String connectionURL = "jdbc:derby://localhost:1527/" + dbName +
 ";create=true";
 Connection conn = null;

Java DB Developer's Guide

119

 // Load the driver. This code is not needed if you are using
 // JDK 6, because in that environment the driver is loaded
 // automatically when the application requests a connection.
 try {
 Class.forName(driver);
 System.out.println(driver + " loaded.");
 } catch (java.lang.ClassNotFoundException ce) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(ce.getMessage());
 System.out.println("\n Make sure your CLASSPATH variable " +
 "contains %DERBY_HOME%\\lib\\derbyclient.jar " +
 "(${DERBY_HOME}/lib/derbyclient.jar).\n");
 } catch (Exception ee) {
 errorPrintAndExit(ee);
 }

 // Create and boot the database and set up users, then shut down
 // the database as one of the users with full access
 try {
 System.out.println("Trying to connect to " + connectionURL);
 conn = DriverManager.getConnection(connectionURL);
 System.out.println("Connected to database " + connectionURL);

 turnOnBuiltInUsers(conn);

 // Close connection
 conn.close();
 System.out.println("Closed connection");

 /* Shut down the database to make static properties take
 * effect. Because the default connection mode is now
 * noAccess, you must specify a user that has access. But
 * because requireAuthentication does not take effect until
 * you restart the database, the password is not checked.
 *
 * Database shutdown throws the 08006 exception to confirm
 * success.
 */
 try {
 DriverManager.getConnection(
 "jdbc:derby://localhost:1527/" + dbName +
 ";user=sa;password=badpass;shutdown=true");
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");
 } catch (Throwable e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Turn on built-in user authentication and user authorization.
 *
 * @param conn a connection to the database.
 */
 public static void turnOnBuiltInUsers(Connection conn)
 throws SQLException {

 String setProperty =
 "CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(";
 String getProperty =
 "VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(";
 String requireAuth = "'derby.connection.requireAuthentication'";
 String defaultConnMode =
 "'derby.database.defaultConnectionMode'";
 String fullAccessUsers = "'derby.database.fullAccessUsers'";

Java DB Developer's Guide

120

 String readOnlyAccessUsers =
 "'derby.database.readOnlyAccessUsers'";
 String provider = "'derby.authentication.provider'";
 String propertiesOnly = "'derby.database.propertiesOnly'";

 System.out.println("Turning on authentication.");
 Statement s = conn.createStatement();

 // Set and confirm requireAuthentication
 s.executeUpdate(setProperty + requireAuth + ", 'true')");
 ResultSet rs = s.executeQuery(getProperty + requireAuth + ")");
 rs.next();
 System.out.println("Value of requireAuthentication is " +
 rs.getString(1));

 // Set authentication scheme to Derby builtin
 s.executeUpdate(setProperty + provider + ", 'BUILTIN')");

 // Create some sample users
 s.executeUpdate(
 setProperty + "'derby.user.sa', 'ajaxj3x9')");
 s.executeUpdate(
 setProperty + "'derby.user.guest', 'java5w6x')");
 s.executeUpdate(
 setProperty + "'derby.user.mary', 'little7xylamb')");

 // Define noAccess as default connection mode
 s.executeUpdate(
 setProperty + defaultConnMode + ", 'noAccess')");

 // Confirm default connection mode
 rs = s.executeQuery(getProperty + defaultConnMode + ")");
 rs.next();
 System.out.println("Value of defaultConnectionMode is " +
 rs.getString(1));

 // Define read-write users
 s.executeUpdate(
 setProperty + fullAccessUsers + ", 'sa,mary')");

 // Define read-only user
 s.executeUpdate(
 setProperty + readOnlyAccessUsers + ", 'guest')");

 // Confirm full-access users
 rs = s.executeQuery(getProperty + fullAccessUsers + ")");
 rs.next();
 System.out.println(
 "Value of fullAccessUsers is " + rs.getString(1));

 // Confirm read-only users
 rs = s.executeQuery(getProperty + readOnlyAccessUsers + ")");
 rs.next();
 System.out.println(
 "Value of readOnlyAccessUsers is " + rs.getString(1));

 // We would set the following property to TRUE only when we were
 // ready to deploy. Setting it to FALSE means that we can always
 // override using system properties if we accidentally paint
 // ourselves into a corner.
 s.executeUpdate("CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
 "'derby.database.propertiesOnly', 'false')");
 s.close();
 }

 /**
 * Report exceptions, with special handling of SQLExceptions,
 * and exit.
 *
 * @param e an exception (Throwable)

Java DB Developer's Guide

121

 */
 static void errorPrintAndExit(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else {
 System.out.println("A non-SQL error occurred.");
 e.printStackTrace();
 }
 System.exit(1);
 }

 /**
 * Iterate through a stack of SQLExceptions.
 *
 * @param sqle a SQLException
 */
 static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle = sqle.getNextException();
 }
 }
}

Source code for AuthExampleClient2.java

import java.sql.*;

public class AuthExampleClient2 {

 public static void main(String[] args) {

 String driver = "org.apache.derby.jdbc.ClientDriver";
 String dbName="authClientDB";
 String connectionURL = "jdbc:derby://localhost:1527/" + dbName;
 Connection conn = null;

 // Restart database and confirm that unauthorized users cannot
 // access it

 // Load the driver. This code is not needed if you are using
 // JDK 6, because in that environment the driver is loaded
 // automatically when the application requests a connection.
 try {
 Class.forName(driver);
 System.out.println(driver + " loaded.");
 } catch (java.lang.ClassNotFoundException ce) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(ce.getMessage());
 System.out.println("\n Make sure your CLASSPATH variable " +
 "contains %DERBY_HOME%\\lib\\derbyclient.jar " +
 "(${DERBY_HOME}/lib/derbyclient.jar). \n");
 } catch (Exception ee) {
 errorPrintAndExit(ee);
 }

 // Try to log in with no username or password
 try {
 // connection attempt should fail
 System.out.println("Trying to connect to " + connectionURL +
 " without username or password");
 conn = DriverManager.getConnection(connectionURL);
 System.out.println(
 "ERROR: Unexpectedly connected to database " + dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("08004")) {

Java DB Developer's Guide

122

 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 } else {
 errorPrintAndExit(e);
 }
 }

 // Log in as a user with read-only access
 try {
 // connection should succeed, but create table should fail
 String newURL = connectionURL +
 ";user=guest;password=java5w6x";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName +
 " with read-only access");

 Statement s = conn.createStatement();
 s.executeUpdate("CREATE TABLE t1(C1 VARCHAR(6))");
 System.out.println(
 "ERROR: Unexpectedly allowed to modify database " +
 dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("25503")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 try {
 conn.close();
 } catch (SQLException ee) {
 errorPrintAndExit(ee);
 }
 } else {
 errorPrintAndExit(e);
 }
 }

 // Log in as a user with full access
 // Create, update, and query table
 try {
 // this should succeed
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 Statement s = conn.createStatement();
 s.executeUpdate("CREATE TABLE T1(C1 VARCHAR(6))");
 System.out.println("Created table T1");
 s.executeUpdate("INSERT INTO T1 VALUES('hello')");

 ResultSet rs = s.executeQuery("SELECT * FROM T1");
 rs.next();
 System.out.println("Value of T1/C1 is " + rs.getString(1));
 s.executeUpdate("DROP TABLE T1");

 s.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 try {
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /**

Java DB Developer's Guide

123

 * Close connection and shut down database.
 *
 * @param conn a connection to the database
 */
 public static void cleanUpAndShutDown (Connection conn)
 throws SQLException {

 String dbName="authClientDB";
 String connectionURL = "jdbc:derby://localhost:1527/" + dbName;

 try {
 conn.close();
 System.out.println("Closed connection");

 // As mary, shut down the database.
 try {
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb;shutdown=true";
 DriverManager.getConnection(newURL);
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Report exceptions, with special handling of SQLExceptions,
 * and exit.
 *
 * @param e an exception (Throwable)
 */
 static void errorPrintAndExit(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else {
 System.out.println("A non-SQL error occurred.");
 e.printStackTrace();
 }
 System.exit(1);
 }

 /**
 * Iterate through a stack of SQLExceptions.
 *
 * @param sqle a SQLException
 */
 static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle = sqle.getNextException();
 }
 }
}

User authentication example in a single-user, embedded environment

In this example, Derby is embedded in a single-user application that is deployed in a
number of different and potentially insecure ways.

Java DB Developer's Guide

124

For that reason, the application developer has decided to encrypt the database and
to turn on user authentication using Derby's built-in user authentication, which will not
require connections to an LDAP server. The end-user must know the bootPassword
to boot the database and the user name and password to connect to the database.
Even if the database ended up in an e-mail, only the intended recipient would be able
to access data in the database. The application developer has decided not to use any
user authorization features, since each database will accept only a single user. In that
situation, the default full-access connection mode is acceptable.

When creating the database, the application developer encrypts the database by using
the following connection URL:

jdbc:derby:wombat;create=true;dataEncryption=true;
 bootPassword=sxy90W348HHn;user=redbaron

Before deploying the database, the application developer turns on user authentication,
sets the authentication provider to BUILTIN, creates a single user and password, and
disallows system-wide properties to protect the database-wide security property settings:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.connection.requireAuthentication', 'true')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.provider', 'BUILTIN')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.redbaron', 'red29PlaNe')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.propertiesOnly', true')

When the user connects (and boots) the database, the user has to provide the
bootPassword, the user name, and the password.

Note: The user name (the value specified by the derby.user.enduser property)
must be supplied when the database is created, even if authentication is not yet enabled.
Otherwise the database owner will have the default name "APP" (see Database owner
for details).

The following example shows how to provide these properties in a connection URL,
although the application programmer would probably provide GUI windows to allow the
end user to type those in:

jdbc:derby:wombat;bootPassword=sxy90W348HHn;
 user=redbaron;password=red29PlaNe

User authentication and authorization embedded example

This example, AuthExampleEmbedded.java, shows how to turn on, use, and turn off
user authentication using Derby's built-in user authentication and user authorization using
the embedded driver.

This example is a single long program. A similar example that uses the client driver, in
User authentication and authorization client example, uses one program to set properties
and a second program to perform database operations. Either example would work
equally well in the other format.

See User authentication and SQL authorization embedded example for an example
similar to this one that uses SQL authorization.

The program does the following:

1. Starts Derby and creates a database named authEmbDB, using the embedded
driver.

Java DB Developer's Guide

125

2. Sets database properties that create users with different levels of access (read-only
and full access), require authentication, and set the default access level to no
access.

3. Closes the connection, then stops and restarts the database so that the
authentication changes can take effect.

4. Tries to connect to the database without a username and password, raising an
exception.

5. Connects to the database as a user with read-only access; the connection
succeeds, but an attempt to create a table raises an exception.

6. Connects to the database as a user with full access; this user can create and
populate a table.

7. Deletes the table.
8. Closes the connection, shuts down the database, then shuts down Derby.

Make sure that the javac command is in your path, then compile the program as follows:

javac AuthExampleEmbedded.java

When you run AuthExampleEmbedded, make sure that
%DERBY_HOME%\lib\derby.jar (or $DERBY_HOME/lib/derby.jar) is in your
classpath. For example, you might use the following command on a UNIX system:

java -cp .:${DERBY_HOME}/lib/derby.jar AuthExampleEmbedded

Source code for AuthExampleEmbedded.java

import java.sql.*;

public class AuthExampleEmbedded {

 public static void main(String[] args) {

 String driver = "org.apache.derby.jdbc.EmbeddedDriver";
 String dbName="authEmbDB";
 String connectionURL = "jdbc:derby:" + dbName + ";create=true";
 Connection conn = null;

 // Load the driver. This code is not needed if you are using
 // JDK 6, because in that environment the driver is loaded
 // automatically when the application requests a connection.
 try {
 Class.forName(driver);
 System.out.println(driver + " loaded.");
 } catch (java.lang.ClassNotFoundException ce) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(ce.getMessage());
 System.out.println("\n Make sure your CLASSPATH variable " +
 "contains %DERBY_HOME%\\lib\\derby.jar " +
 "(${DERBY_HOME}/lib/derby.jar).\n");
 } catch (Exception ee) {
 errorPrintAndExit(ee);
 }

 // Create and boot the database and set up users, then shut down
 // the database as one of the users with full access
 try {
 System.out.println("Trying to connect to " + connectionURL);
 conn = DriverManager.getConnection(connectionURL);
 System.out.println("Connected to database " + connectionURL);

 turnOnBuiltInUsers(conn);

 // close the connection
 conn.close();
 System.out.println("Closed connection");

 /* Shut down the database to make static properties take

Java DB Developer's Guide

126

 * effect. Because the default connection mode is now
 * noAccess, you must specify a user that has access. But
 * because requireAuthentication does not take effect until
 * you restart the database, the password is not checked.
 *
 * Database shutdown throws the 08006 exception to confirm
 * success.
 */
 try {
 DriverManager.getConnection("jdbc:derby:" + dbName +
 ";user=sa;password=badpass;shutdown=true");
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 // Restart database and confirm that unauthorized users cannot
 // access it
 connectionURL = "jdbc:derby:" + dbName;

 // Try to log in with no username or password
 try {
 // connection attempt should fail
 System.out.println("Trying to connect to " + connectionURL +
 " without username or password");
 conn = DriverManager.getConnection(connectionURL);
 System.out.println(
 "ERROR: Unexpectedly connected to database " + dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("08004")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 } else {
 errorPrintAndExit(e);
 }
 }

 // Log in as a user with read-only access
 try {
 // connection should succeed, but create table should fail
 String newURL = connectionURL +
 ";user=guest;password=java5w6x";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName +
 " with read-only access");

 Statement s = conn.createStatement();
 s.executeUpdate("CREATE TABLE t1(C1 VARCHAR(6))");
 System.out.println(
 "ERROR: Unexpectedly allowed to modify database " +
 dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("25503")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 try {
 conn.close();
 } catch (SQLException ee) {
 errorPrintAndExit(ee);
 }
 } else {
 errorPrintAndExit(e);

Java DB Developer's Guide

127

 }
 }

 // Log in as a user with full access
 // Create, update, and query table
 try {
 // this should succeed
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 Statement s = conn.createStatement();
 s.executeUpdate("CREATE TABLE T1(C1 VARCHAR(6))");
 System.out.println("Created table T1");
 s.executeUpdate("INSERT INTO T1 VALUES('hello')");

 ResultSet rs = s.executeQuery("SELECT * FROM T1");
 rs.next();
 System.out.println("Value of T1/C1 is " + rs.getString(1));
 s.executeUpdate("DROP TABLE T1");

 s.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 try {
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Close connection and shut down database. Since this is embedded
 * mode, we must also shut down the Derby system.
 *
 * @param conn a connection to the database
 */
 public static void cleanUpAndShutDown (Connection conn)
 throws SQLException {

 String dbName="authEmbDB";
 String connectionURL = "jdbc:derby:" + dbName;

 try {
 conn.close();
 System.out.println("Closed connection");

 // As mary, shut down the database.
 try {
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb;shutdown=true";
 DriverManager.getConnection(newURL);
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");

 try {
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException se) {
 if (!se.getSQLState().equals("XJ015")) {
 throw se;
 }
 }

Java DB Developer's Guide

128

 System.out.println("Derby system shut down normally");
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Turn on built-in user authentication and user authorization.
 *
 * @param conn a connection to the database
 */
 public static void turnOnBuiltInUsers(Connection conn)
 throws SQLException {

 String setProperty =
 "CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(";
 String getProperty =
 "VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(";
 String requireAuth = "'derby.connection.requireAuthentication'";
 String defaultConnMode =
 "'derby.database.defaultConnectionMode'";
 String fullAccessUsers = "'derby.database.fullAccessUsers'";
 String readOnlyAccessUsers =
 "'derby.database.readOnlyAccessUsers'";
 String provider = "'derby.authentication.provider'";
 String propertiesOnly = "'derby.database.propertiesOnly'";

 System.out.println("Turning on authentication.");
 Statement s = conn.createStatement();

 // Set and confirm requireAuthentication
 s.executeUpdate(setProperty + requireAuth + ", 'true')");
 ResultSet rs = s.executeQuery(getProperty + requireAuth + ")");
 rs.next();
 System.out.println("Value of requireAuthentication is " +
 rs.getString(1));

 // Set authentication scheme to Derby builtin
 s.executeUpdate(setProperty + provider + ", 'BUILTIN')");

 // Create some sample users
 s.executeUpdate(
 setProperty + "'derby.user.sa', 'ajaxj3x9')");
 s.executeUpdate(
 setProperty + "'derby.user.guest', 'java5w6x')");
 s.executeUpdate(
 setProperty + "'derby.user.mary', 'little7xylamb')");

 // Define noAccess as default connection mode
 s.executeUpdate(
 setProperty + defaultConnMode + ", 'noAccess')");

 // Confirm default connection mode
 rs = s.executeQuery(getProperty + defaultConnMode + ")");
 rs.next();
 System.out.println("Value of defaultConnectionMode is " +
 rs.getString(1));

 // Define read-write user
 s.executeUpdate(
 setProperty + fullAccessUsers + ", 'sa,mary')");

 // Define read-only user
 s.executeUpdate(
 setProperty + readOnlyAccessUsers + ", 'guest')");

 // Confirm full-access users
 rs = s.executeQuery(getProperty + fullAccessUsers + ")");
 rs.next();

Java DB Developer's Guide

129

 System.out.println(
 "Value of fullAccessUsers is " + rs.getString(1));

 // Confirm read-only users
 rs = s.executeQuery(getProperty + readOnlyAccessUsers + ")");
 rs.next();
 System.out.println(
 "Value of readOnlyAccessUsers is " + rs.getString(1));

 // We would set the following property to TRUE only when we were
 // ready to deploy. Setting it to FALSE means that we can always
 // override using system properties if we accidentally paint
 // ourselves into a corner.
 s.executeUpdate(setProperty + propertiesOnly + ", 'false')");
 s.close();
 }

 /**
 * Report exceptions, with special handling of SQLExceptions,
 * and exit.
 *
 * @param e an exception (Throwable)
 */
 static void errorPrintAndExit(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else {
 System.out.println("A non-SQL error occurred.");
 e.printStackTrace();
 }
 System.exit(1);
 }

 /**
 * Iterate through a stack of SQLExceptions.
 *
 * @param sqle a SQLException
 */
 static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle = sqle.getNextException();
 }
 }
}

User authentication examples using SQL authorization

These examples show how to use SQL authorization in conjunction with Derby's built-in
user authentication and user authorization.

These examples are based on the examples in User authentication and authorization
client example and User authentication and authorization embedded example.

User authentication and SQL authorization client example

This example consists of a pair of programs, AuthExampleClientSQLAuth1.java
and AuthExampleClientSQLAuth2.java, which show how to use SQL authorization,
in addition to Derby's built-in user authentication and user authorization, with the client
driver.

This example uses one program to set properties and a second program to perform
database operations. A similar example that uses the embedded driver, in User

Java DB Developer's Guide

130

authentication and SQL authorization embedded example, is a single long program.
Either example would work equally well in the other format.

See User authorizations for more information on using SQL authorization, which allows
you to use ANSI SQL Standard GRANT and REVOKE statements. Compare this
example to the one in User authentication and authorization client example, which does
not use SQL authorization.

The first program, AuthExampleClientSQLAuth1.java, does the following:

1. Creates a database named sqlAuthClientDB, using the client driver. The
connection URL creates the database as the user mary, who is therefore the
database owner. After SQL authorization is enabled, only the database owner will
have the right to set and read database properties.

2. Sets database properties that create users with different levels of access (no
access, read-only access, and full access), that require authentication, and that turn
on SQL authorization. The users mary and sqlsam have full access.

3. Closes the connection, then shuts down the database so that the authentication and
SQL authorization changes can take effect.

The second program, AuthExampleClientSQLAuth2.java, does the following:

1. Tries to connect to the database without a username and password, raising an
exception.

2. Tries to connect to the database as a user with no access, raising an exception.
3. Connects to the database as a user with read-only access; the connection

succeeds, but an attempt to create a table raises an exception.
4. Connects to the database as mary, who has full access; this user creates and

populates a table. This user also grants select and insert privileges on this table to
another user.

5. Connects to the database as sqlsam, the user who has been granted select and
insert privileges by mary. This user has full (that is, read-write) access on the
connection level, but has limited powers for this table because SQL authorization is
active. The user successfully performs select and insert operations on the table, but
an attempt to delete a row from the table raises an exception.

6. Connects to the database again as mary, who then deletes the table.
7. Shuts down the database.

Make sure that the javac command is in your path, then compile the programs as
follows:

javac AuthExampleClientSQLAuth1.java

javac AuthExampleClientSQLAuth2.java

Before you run the programs, start the Derby Network Server as described in
step 2 of "Activity 4: Create and run a JDBC program using the client driver
and Network Server" in Getting Started with Java DB. When you run the
programs, make sure that %DERBY_HOME%\lib\derbyclient.jar (or
$DERBY_HOME/lib/derbyclient.jar) is in your classpath. For example, you might
use the following commands on a UNIX system:

java -cp .:${DERBY_HOME}/lib/derbyclient.jar
AuthExampleClientSQLAuth1

java -cp .:${DERBY_HOME}/lib/derbyclient.jar
AuthExampleClientSQLAuth2

Source code for AuthExampleClientSQLAuth1.java

import java.sql.*;

Java DB Developer's Guide

131

public class AuthExampleClientSQLAuth1 {

 public static void main(String[] args) {

 String driver = "org.apache.derby.jdbc.ClientDriver";
 String dbName="sqlAuthClientDB";
 String dbOwner="mary";
 String connectionURL = "jdbc:derby://localhost:1527/" + dbName +
 ";user=" + dbOwner + ";create=true";
 Connection conn = null;

 // Load the driver. This code is not needed if you are using
 // JDK 6, because in that environment the driver is loaded
 // automatically when the application requests a connection.
 try {
 Class.forName(driver);
 System.out.println(driver + " loaded.");
 } catch (java.lang.ClassNotFoundException ce) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(ce.getMessage());
 System.out.println("\n Make sure your CLASSPATH variable " +
 "contains %DERBY_HOME%\\lib\\derbyclient.jar " +
 "(${DERBY_HOME}/lib/derbyclient.jar).\n");
 } catch (Exception ee) {
 errorPrintAndExit(ee);
 }

 // Create and boot the database as user mary (who then becomes
 // the database owner), set up users and then shut down the
 // database
 try {
 System.out.println("Trying to connect to " + connectionURL);
 conn = DriverManager.getConnection(connectionURL);
 System.out.println("Connected to database " + connectionURL);

 turnOnBuiltInUsers(conn);

 // Close connection
 conn.close();
 System.out.println("Closed connection");

 /* Shut down the database to make static properties take
 * effect. Because the default connection mode is now
 * noAccess, you must specify a user that has access. But
 * because requireAuthentication and sqlAuthorization do not
 * take effect until you restart the database, you do not
 * need to specify a password.
 *
 * Database shutdown throws the 08006 exception to confirm
 * success.
 */
 try {
 DriverManager.getConnection(
 "jdbc:derby://localhost:1527/" + dbName +
 ";user=mary;shutdown=true");
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");
 } catch (Throwable e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Turn on built-in user authentication and SQL authorization.
 *
 * Default connection mode is fullAccess, but SQL authorization

Java DB Developer's Guide

132

 * restricts access to the owners of database objects.
 *
 * @param conn a connection to the database
 */
 public static void turnOnBuiltInUsers(Connection conn)
 throws SQLException {

 String setProperty =
 "CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(";
 String getProperty =
 "VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(";
 String requireAuth = "'derby.connection.requireAuthentication'";
 String sqlAuthorization = "'derby.database.sqlAuthorization'";
 String defaultConnMode =
 "'derby.database.defaultConnectionMode'";
 String fullAccessUsers = "'derby.database.fullAccessUsers'";
 String readOnlyAccessUsers =
 "'derby.database.readOnlyAccessUsers'";
 String provider = "'derby.authentication.provider'";
 String propertiesOnly = "'derby.database.propertiesOnly'";

 System.out.println(
 "Turning on authentication and SQL authorization.");
 Statement s = conn.createStatement();

 // Set requireAuthentication
 s.executeUpdate(setProperty + requireAuth + ", 'true')");
 // Set sqlAuthorization
 s.executeUpdate(setProperty + sqlAuthorization + ", 'true')");

 // Retrieve and display property values
 ResultSet rs = s.executeQuery(getProperty + requireAuth + ")");
 rs.next();
 System.out.println(
 "Value of requireAuthentication is " + rs.getString(1));

 rs = s.executeQuery(getProperty + sqlAuthorization + ")");
 rs.next();
 System.out.println(
 "Value of sqlAuthorization is " + rs.getString(1));

 // Set authentication scheme to Derby builtin
 s.executeUpdate(setProperty + provider + ", 'BUILTIN')");

 // Create some sample users
 s.executeUpdate(
 setProperty + "'derby.user.sa', 'ajaxj3x9')");
 s.executeUpdate(
 setProperty + "'derby.user.guest', 'java5w6x')");
 s.executeUpdate(
 setProperty + "'derby.user.mary', 'little7xylamb')");
 s.executeUpdate(
 setProperty + "'derby.user.sqlsam', 'light8q9bulb')");

 // Define noAccess as default connection mode
 s.executeUpdate(
 setProperty + defaultConnMode + ", 'noAccess')");

 // Confirm default connection mode
 rs = s.executeQuery(getProperty + defaultConnMode + ")");
 rs.next();
 System.out.println("Value of defaultConnectionMode is " +
 rs.getString(1));

 // Define read-write users
 s.executeUpdate(
 setProperty + fullAccessUsers + ", 'sqlsam,mary')");

 // Define read-only user
 s.executeUpdate(

Java DB Developer's Guide

133

 setProperty + readOnlyAccessUsers + ", 'guest')");

 // Therefore, user sa has no access

 // Confirm full-access users
 rs = s.executeQuery(getProperty + fullAccessUsers + ")");
 rs.next();
 System.out.println(
 "Value of fullAccessUsers is " + rs.getString(1));

 // Confirm read-only users
 rs = s.executeQuery(getProperty + readOnlyAccessUsers + ")");
 rs.next();
 System.out.println(
 "Value of readOnlyAccessUsers is " + rs.getString(1));

 // We would set the following property to TRUE only when we were
 // ready to deploy. Setting it to FALSE means that we can always
 // override using system properties if we accidentally paint
 // ourselves into a corner.
 s.executeUpdate("CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
 "'derby.database.propertiesOnly', 'false')");
 s.close();
 }

 /**
 * Report exceptions, with special handling of SQLExceptions,
 * and exit.
 *
 * @param e an exception (Throwable)
 */
 static void errorPrintAndExit(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else {
 System.out.println("A non-SQL error occurred.");
 e.printStackTrace();
 }
 System.exit(1);
 }

 /**
 * Iterate through a stack of SQLExceptions.
 *
 * @param sqle a SQLException
 */
 static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle = sqle.getNextException();
 }
 }
}

Source code for AuthExampleClientSQLAuth2.java

import java.sql.*;

public class AuthExampleClientSQLAuth2 {

 public static void main(String[] args) {

 String driver = "org.apache.derby.jdbc.ClientDriver";
 String dbName="sqlAuthClientDB";
 String dbOwner="mary";
 String connectionURL = "jdbc:derby://localhost:1527/" + dbName;
 Connection conn = null;

Java DB Developer's Guide

134

 // Restart database and confirm that unauthorized users cannot
 // access it

 // Load the driver. This code is not needed if you are using
 // JDK 6, because in that environment the driver is loaded
 // automatically when the application requests a connection.
 try {
 Class.forName(driver);
 System.out.println(driver + " loaded.");
 } catch (java.lang.ClassNotFoundException ce) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(ce.getMessage());
 System.out.println("\n Make sure your CLASSPATH variable " +
 "contains %DERBY_HOME%\\lib\\derbyclient.jar " +
 "(${DERBY_HOME}/lib/derbyclient.jar). \n");
 } catch (Exception ee) {
 errorPrintAndExit(ee);
 }

 // Try to log in with no username or password
 try {
 // connection attempt should fail
 System.out.println("Trying to connect to " + connectionURL +
 " without username or password");
 conn = DriverManager.getConnection(connectionURL);
 System.out.println(
 "ERROR: Unexpectedly connected to database " + dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("08004")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 } else {
 errorPrintAndExit(e);
 }
 }

 // Try to log in as a valid user with noAccess
 try {
 // connection attempt should fail
 String newURL = connectionURL + ";user=sa;password=ajaxj3x9";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println(
 "ERROR: Unexpectedly allowed to connect to database " +
 dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("08004")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 } else {
 errorPrintAndExit(e);
 }
 }

 // Log in as a user with read-only access
 try {
 // connection should succeed, but create table should fail
 String newURL = connectionURL +
 ";user=guest;password=java5w6x";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName +
 " with read-only access");

 Statement s = conn.createStatement();
 s.executeUpdate(
 "CREATE TABLE accessibletbl(textcol VARCHAR(6))");

Java DB Developer's Guide

135

 System.out.println(
 "ERROR: Unexpectedly allowed to modify database " +
 dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("25503")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 try {
 conn.close();
 } catch (SQLException ee) {
 errorPrintAndExit(ee);
 }
 } else {
 errorPrintAndExit(e);
 }
 }

 // Log in as a user with full access
 // Create, update, and query table
 // Grant select and insert privileges to another user
 try {
 // this should succeed
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 Statement s = conn.createStatement();

 s.executeUpdate(
 "CREATE TABLE accessibletbl(textcol VARCHAR(6))");
 System.out.println("Created table accessibletbl");
 s.executeUpdate("INSERT INTO accessibletbl VALUES('hello')");

 ResultSet rs = s.executeQuery("SELECT * FROM accessibletbl");
 rs.next();
 System.out.println("Value of accessibletbl/textcol is " +
 rs.getString(1));

 // grant insert privileges on table to user sqlsam
 s.executeUpdate(
 "GRANT SELECT, INSERT ON accessibletbl TO sqlsam");
 System.out.println(
 "Granted select/insert privileges to sqlsam");

 s.close();
 conn.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 // Log in as user with select and insert privileges on the table,
 // but not delete privileges
 try {
 String newURL =
 connectionURL + ";user=sqlsam;password=light8q9bulb";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 // look at table
 Statement s = conn.createStatement();
 ResultSet rs =
 s.executeQuery("SELECT * FROM mary.accessibletbl");
 rs.next();
 System.out.println("Value of accessibletbl/textcol is " +
 rs.getString(1));

Java DB Developer's Guide

136

 s.executeUpdate(
 "INSERT INTO mary.accessibletbl VALUES('sam')");
 System.out.println("Inserted string into table");

 rs = s.executeQuery("SELECT * FROM mary.accessibletbl");
 while (rs.next()) {
 System.out.println("Value of accessibletbl/textcol is " +
 rs.getString(1));
 }
 s.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 try {
 Statement s = conn.createStatement();

 // this should fail
 s.executeUpdate("DELETE FROM mary.accessibletbl " +
 "WHERE textcol = 'hello'");
 System.out.println("ERROR: Unexpectedly allowed to DELETE " +
 "table mary.accessibletbl");
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("42500")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 try {
 conn.close();
 } catch (SQLException ee) {
 errorPrintAndExit(ee);
 }
 } else {
 errorPrintAndExit(e);
 }
 }

 /* Log in again as mary, delete table
 */
 try {
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 Statement s = conn.createStatement();
 s.executeUpdate("DROP TABLE accessibletbl");
 System.out.println("Removed table accessibletbl");
 s.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 try {
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /** Close connection and shut down database.
 *
 * @param conn a connection to the database
 */
 public static void cleanUpAndShutDown (Connection conn)
 throws SQLException {

 String dbName="sqlAuthClientDB";
 String dbOwner="mary";

Java DB Developer's Guide

137

 String connectionURL = "jdbc:derby://localhost:1527/" + dbName;

 try {
 conn.close();
 System.out.println("Closed connection");

 // As mary, the database owner, shut down the database.
 try {
 String newURL = connectionURL + ";user=" + dbOwner +
 ";password=little7xylamb;shutdown=true";
 DriverManager.getConnection(newURL);
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Report exceptions, with special handling of SQLExceptions,
 * and exit.
 *
 * @param e an exception (Throwable)
 */
 static void errorPrintAndExit(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else {
 System.out.println("A non-SQL error occurred.");
 e.printStackTrace();
 }
 System.exit(1);
 }

 /**
 * Iterate through a stack of SQLExceptions.
 *
 * @param sqle a SQLException
 */
 static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle = sqle.getNextException();
 }
 }
}

User authentication and SQL authorization embedded example

This example, AuthExampleEmbeddedSQLAuth.java, shows how to use SQL
authorization, in addition to Derby's built-in user authentication and user authorization,
with the embedded driver.

This example is a single long program. A similar example that uses the client driver,
in User authentication and SQL authorization client example, uses one program to set
properties and a second program to perform database operations. Either example would
work equally well in the other format.

See User authorizations for more information on using SQL authorization, which allows
you to use ANSI SQL Standard GRANT and REVOKE statements. Compare this

Java DB Developer's Guide

138

example to the one in User authentication and authorization embedded example, which
does not use SQL authorization.

The program does the following:

1. Starts Derby and creates a database named sqlAuthEmbDB, using the embedded
driver. The connection URL creates the database as the user mary, who is
therefore the database owner. After SQL authorization is enabled, only the
database owner will have the right to set and read database properties.

2. Sets database properties that create users with different levels of access (no
access, read-only access, and full access), that require authentication, and that turn
on SQL authorization. The users mary and sqlsam have full access.

3. Closes the connection, then stops and restarts the database so that the
authentication and SQL authorization changes can take effect.

4. Tries to connect to the database without a username and password, raising an
exception.

5. Tries to connect to the database as a user with no access, raising an exception.
6. Connects to the database as a user with read-only access; the connection

succeeds, but an attempt to create a table raises an exception.
7. Connects to the database as mary, who has full access; this user creates and

populates a table. This user also grants select and insert privileges on this table to
another user.

8. Connects to the database as sqlsam, the user who has been granted select and
insert privileges by mary. This user has full (that is, read-write) access on the
connection level, but has limited powers for this table because SQL authorization is
active. The user successfully performs select and insert operations on the table, but
an attempt to delete a row from the table raises an exception.

9. Connects to the database again as mary, who then deletes the table.
10. Closes the connection, shuts down the database, then shuts down Derby.

Make sure that the javac command is in your path, then compile the program as follows:

javac AuthExampleEmbeddedSQLAuth.java

When you run AuthExampleEmbeddedSQLAuth, make sure that
%DERBY_HOME%\lib\derby.jar (or $DERBY_HOME/lib/derby.jar) is in your
classpath. For example, you might use the following command on a Windows system:

java -cp .;%DERBY_HOME%\lib\derby.jar AuthExampleEmbeddedSQLAuth

Source code for AuthExampleEmbeddedSQLAuth.java

import java.sql.*;

public class AuthExampleEmbeddedSQLAuth {

 public static void main(String[] args) {

 String driver = "org.apache.derby.jdbc.EmbeddedDriver";
 String dbName="sqlAuthEmbDB";
 String dbOwner="mary";
 String connectionURL = "jdbc:derby:" + dbName +
 ";user=" + dbOwner + ";create=true";
 Connection conn = null;

 // Load the driver. This code is not needed if you are using
 // JDK 6, because in that environment the driver is loaded
 // automatically when the application requests a connection.
 try {
 Class.forName(driver);
 System.out.println(driver + " loaded.");
 } catch (java.lang.ClassNotFoundException ce) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(ce.getMessage());

Java DB Developer's Guide

139

 System.out.println("\n Make sure your CLASSPATH variable " +
 "contains %DERBY_HOME%\\lib\\derby.jar " +
 "(${DERBY_HOME}/lib/derby.jar).\n");
 } catch (Exception ee) {
 errorPrintAndExit(ee);
 }

 // Create and boot the database as user mary (who then becomes
 // the database owner), set up users and then shut down the
 // database
 try {
 System.out.println("Trying to connect to " + connectionURL);
 conn = DriverManager.getConnection(connectionURL);
 System.out.println("Connected to database " + connectionURL);

 turnOnBuiltInUsers(conn);

 // Close connection
 conn.close();
 System.out.println("Closed connection");

 /* Shut down the database to make static properties take
 * effect. Because the default connection mode is now
 * noAccess, you must specify a user that has access. But
 * because requireAuthentication and sqlAuthorization do not
 * take effect until you restart the database, you do not
 * need to specify a password.
 *
 * Database shutdown throws the 08006 exception to confirm
 * success.
 */
 try {
 DriverManager.getConnection("jdbc:derby:" + dbName +
 ";user=mary;shutdown=true");
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 // Restart database and confirm that unauthorized users cannot
 // access it
 connectionURL = "jdbc:derby:" + dbName;

 // Try to log in with no username or password
 try {
 // connection attempt should fail
 System.out.println("Trying to connect to " + connectionURL +
 " without username or password");
 conn = DriverManager.getConnection(connectionURL);
 System.out.println(
 "ERROR: Unexpectedly connected to database " + dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("08004")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 } else {
 errorPrintAndExit(e);
 }
 }

 // Try to log in as a valid user with noAccess
 try {
 // connection attempt should fail
 String newURL = connectionURL + ";user=sa;password=ajaxj3x9";

Java DB Developer's Guide

140

 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println(
 "ERROR: Unexpectedly allowed to connect to database " +
 dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("08004")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 } else {
 errorPrintAndExit(e);
 }
 }

 // Log in as a user with read-only access
 try {
 // connection should succeed, but create table should fail
 String newURL = connectionURL +
 ";user=guest;password=java5w6x";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName +
 " with read-only access");

 Statement s = conn.createStatement();
 s.executeUpdate(
 "CREATE TABLE accessibletbl(textcol VARCHAR(6))");
 System.out.println(
 "ERROR: Unexpectedly allowed to modify database " +
 dbName);
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("25503")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 try {
 conn.close();
 } catch (SQLException ee) {
 errorPrintAndExit(ee);
 }
 } else {
 errorPrintAndExit(e);
 }
 }

 // Log in as a user with full access
 // Create, update, and query table
 // Grant select and insert privileges to another user
 try {
 // this should succeed
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 Statement s = conn.createStatement();

 s.executeUpdate(
 "CREATE TABLE accessibletbl(textcol VARCHAR(6))");
 System.out.println("Created table accessibletbl");
 s.executeUpdate("INSERT INTO accessibletbl VALUES('hello')");

 ResultSet rs = s.executeQuery("SELECT * FROM accessibletbl");
 rs.next();
 System.out.println("Value of accessibletbl/textcol is " +
 rs.getString(1));

 // grant insert privileges on table to user sqlsam

Java DB Developer's Guide

141

 s.executeUpdate(
 "GRANT SELECT, INSERT ON accessibletbl TO sqlsam");
 System.out.println(
 "Granted select/insert privileges to sqlsam");

 s.close();
 conn.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 // Log in as user with select and insert privileges on the table,
 // but not delete privileges
 try {
 String newURL =
 connectionURL + ";user=sqlsam;password=light8q9bulb";
 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 // look at table
 Statement s = conn.createStatement();
 ResultSet rs =
 s.executeQuery("SELECT * FROM mary.accessibletbl");
 rs.next();
 System.out.println("Value of accessibletbl/textcol is " +
 rs.getString(1));

 s.executeUpdate(
 "INSERT INTO mary.accessibletbl VALUES('sam')");
 System.out.println("Inserted string into table");

 rs = s.executeQuery("SELECT * FROM mary.accessibletbl");
 while (rs.next()) {
 System.out.println("Value of accessibletbl/textcol is " +
 rs.getString(1));
 }
 s.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 try {
 Statement s = conn.createStatement();

 // this should fail
 s.executeUpdate("DELETE FROM mary.accessibletbl " +
 "WHERE textcol = 'hello'");
 System.out.println("ERROR: Unexpectedly allowed to DELETE " +
 "table mary.accessibletbl");
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 if (e.getSQLState().equals("42500")) {
 System.out.println("Correct behavior: SQLException: " +
 e.getMessage());
 try {
 conn.close();
 } catch (SQLException ee) {
 errorPrintAndExit(ee);
 }
 } else {
 errorPrintAndExit(e);
 }
 }

 /* Log in again as mary, delete table
 */
 try {
 String newURL = connectionURL +
 ";user=mary;password=little7xylamb";

Java DB Developer's Guide

142

 System.out.println("Trying to connect to " + newURL);
 conn = DriverManager.getConnection(newURL);
 System.out.println("Connected to database " + dbName);

 Statement s = conn.createStatement();
 s.executeUpdate("DROP TABLE accessibletbl");
 System.out.println("Removed table accessibletbl");
 s.close();
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }

 try {
 cleanUpAndShutDown(conn);
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Close connection and shut down database. Since this is embedded
 * mode, we must also shut down the Derby system.
 *
 * @param conn a connection to the database
 */
 public static void cleanUpAndShutDown (Connection conn)
 throws SQLException {

 String dbName="sqlAuthEmbDB";
 String dbOwner="mary";
 String connectionURL = "jdbc:derby:" + dbName;

 try {
 conn.close();
 System.out.println("Closed connection");

 // As mary, the database owner, shut down the database.
 try {
 String newURL = connectionURL + ";user=" + dbOwner +
 ";password=little7xylamb;shutdown=true";
 DriverManager.getConnection(newURL);
 } catch (SQLException se) {
 if (!se.getSQLState().equals("08006")) {
 throw se;
 }
 }
 System.out.println("Database shut down normally");

 try {
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException se) {
 if (!se.getSQLState().equals("XJ015")) {
 throw se;
 }
 }

 System.out.println("Derby system shut down normally");
 } catch (SQLException e) {
 errorPrintAndExit(e);
 }
 }

 /**
 * Turn on built-in user authentication and SQL authorization.
 *
 * Default connection mode is fullAccess, but SQL authorization
 * restricts access to the owners of database objects.
 *
 * @param conn a connection to the database
 */

Java DB Developer's Guide

143

 public static void turnOnBuiltInUsers(Connection conn)
 throws SQLException {

 String setProperty =
 "CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(";
 String getProperty =
 "VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(";
 String requireAuth = "'derby.connection.requireAuthentication'";
 String sqlAuthorization = "'derby.database.sqlAuthorization'";
 String defaultConnMode =
 "'derby.database.defaultConnectionMode'";
 String fullAccessUsers = "'derby.database.fullAccessUsers'";
 String readOnlyAccessUsers =
 "'derby.database.readOnlyAccessUsers'";
 String provider = "'derby.authentication.provider'";
 String propertiesOnly = "'derby.database.propertiesOnly'";

 System.out.println(
 "Turning on authentication and SQL authorization.");
 Statement s = conn.createStatement();

 // Set requireAuthentication
 s.executeUpdate(setProperty + requireAuth + ", 'true')");
 // Set sqlAuthorization
 s.executeUpdate(setProperty + sqlAuthorization + ", 'true')");

 // Retrieve and display property values
 ResultSet rs = s.executeQuery(getProperty + requireAuth + ")");
 rs.next();
 System.out.println(
 "Value of requireAuthentication is " + rs.getString(1));

 rs = s.executeQuery(getProperty + sqlAuthorization + ")");
 rs.next();
 System.out.println(
 "Value of sqlAuthorization is " + rs.getString(1));

 // Set authentication scheme to Derby builtin
 s.executeUpdate(setProperty + provider + ", 'BUILTIN')");

 // Create some sample users
 s.executeUpdate(
 setProperty + "'derby.user.sa', 'ajaxj3x9')");
 s.executeUpdate(
 setProperty + "'derby.user.guest', 'java5w6x')");
 s.executeUpdate(
 setProperty + "'derby.user.mary', 'little7xylamb')");
 s.executeUpdate(
 setProperty + "'derby.user.sqlsam', 'light8q9bulb')");

 // Define noAccess as default connection mode
 s.executeUpdate(
 setProperty + defaultConnMode + ", 'noAccess')");

 // Confirm default connection mode
 rs = s.executeQuery(getProperty + defaultConnMode + ")");
 rs.next();
 System.out.println("Value of defaultConnectionMode is " +
 rs.getString(1));

 // Define read-write users
 s.executeUpdate(
 setProperty + fullAccessUsers + ", 'sqlsam,mary')");

 // Define read-only user
 s.executeUpdate(
 setProperty + readOnlyAccessUsers + ", 'guest')");

 // Therefore, user sa has no access

Java DB Developer's Guide

144

 // Confirm full-access users
 rs = s.executeQuery(getProperty + fullAccessUsers + ")");
 rs.next();
 System.out.println(
 "Value of fullAccessUsers is " + rs.getString(1));

 // Confirm read-only users
 rs = s.executeQuery(getProperty + readOnlyAccessUsers + ")");
 rs.next();
 System.out.println(
 "Value of readOnlyAccessUsers is " + rs.getString(1));

 // We would set the following property to TRUE only when we were
 // ready to deploy. Setting it to FALSE means that we can always
 // override using system properties if we accidentally paint
 // ourselves into a corner.
 s.executeUpdate(setProperty + propertiesOnly + ", 'false')");
 s.close();
 }

 /**
 * Report exceptions, with special handling of SQLExceptions,
 * and exit.
 *
 * @param e an exception (Throwable)
 */
 static void errorPrintAndExit(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else {
 System.out.println("A non-SQL error occurred.");
 e.printStackTrace();
 }
 System.exit(1);
 }

 /**
 * Iterate through a stack of SQLExceptions.
 *
 * @param sqle a SQLException
 */
 static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle = sqle.getNextException();
 }
 }
}

Running Derby under a security manager
When running within an application or application server with a Java 2 Security Manager
enabled, Derby must be granted certain permissions to execute and access database
files.

For more information about permissions and examples of creating permission
objects and granting permissions, see the Security Architecture specification at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html.

Granting permissions to Derby

This section discusses which permissions should be granted to Derby (the code base
derby.jar).

Java DB Developer's Guide

145

See Default Policy Implementation and Policy File Syntax at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html for more information
about creating policy files.

Mandatory permissions
permission java.lang.RuntimePermission createClassLoader

Mandatory. It allows Derby to execute SQL queries and supports loading class files
from jar files stored in the database.

permission java.util.PropertyPermission "derby.*", "read"
Allows Derby to read individual Derby properties set in the JVM machine's system
set. If the action is denied, properties in the JVM machine's system set are ignored.

permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
"write"

This property is used by Derby to prevent the accidental boot of the database by two
class loaders. If the database is booted by two class loaders, database corruption can
occur. If write permission for this property is not granted, a message is printed to the
log file which indicates that the Derby database is not protected from dual boot and
possible corruption.

Database access permissions
permission java.io.FilePermission "directory${/}/-", "read,write,delete"

Allows Derby to manage files within the database that maps to the directory specified.
For read-only databases, only the "read" action needs to be granted.

Optional permissions
permission java.io.FilePermission "${derby.system.home}", "read,write"

Allows Derby to determine the system directory when set by derby.system.home
and create it if needed. If the system directory already exists then only the "read"
permission needs to be granted.

permission java.util.PropertyPermission "user.dir", "read"
Permits access to the system directory value if derby.system.home is not set or no
permission has been granted to read the derby.system.home property.

permission java.util.PropertyPermission "sun.arch.data.model", "read"
If set by the JVM, this is the definite answer to whether the system is 32 or 64 bit.

permission java.util.PropertyPermission "os.arch", "read"
Used by Derby to determine if the system is 32 or 64 bit, if the system property
sun.arch.data.model isn't set by the JVM. Derby has to recognize the value of os.arch
to determine if the system is 32 or 64 bit, and if the value isn't recognized a heuristic
will be used instead.

permission java.io.FilePermission
"${derby.system.home}${/}derby.properties", "read"

Allows Derby to read the system properties file from the system directory.
permission java.io.FilePermission "${derby.system.home}${/}derby.log",
"read,write,delete"
permission java.io.FilePermission "${user.dir}${/}derby.log",
"read,write,delete";

Only one of these permissions is needed. Permits the application to read, write,
and delete to the Derby log file, unless the log has been re-directed. (See
the derby.stream.error properties in the Java DB Reference Manual for more
information.) If one of the requested valid actions is denied, the Derby log will be
java.lang.System.err.

permission java.security.SecurityPermission "getPolicy"
You need this permission if you want to change the security policy on the fly and
reload it into a running system. Given this permission, a DBA can reload the policy
file by calling the SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system
procedure. For more information, see the section which describes this procedure in
the Java DB Reference Manual.

http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html

Java DB Developer's Guide

146

permission java.lang.RuntimePermission "setContextClassLoader"
Allows Derby to set the context class loader for long running threads to null to
avoid potential for class loader leaks in application server environments when the
application server starts Derby in a custom class loader.

permission java.lang.RuntimePermission "getClassLoader"
This permission is also needed when setting the context class loader to avoid class
loader leaks. The class loader for the parent is saved and set to null before creation
of the thread and restored afterwards.

permission javax.management.MBeanServerPermission
"createMBeanServer";

Allows Derby to create an MBean server. If the JVM running Derby
supports the platform MBean server, Derby will automatically try to create
such a server if it does not already exist. For details, visit the wiki page
http://wiki.apache.org/db-derby/DerbyJMX.

permission javax.management.MBeanPermission
"org.apache.derby.*#[org.apache.derby:*]","registerMBean,unregisterMBean";

Allows Derby to register and unregister its (JMX) MBeans. Such MBeans are
associated with the domain org.apache.derby, which is also the prefix
of the fully qualified class name of all Derby MBeans. For more information
about Derby's MBeans, refer to the public API (Javadoc) documentation of the
package org.apache.derby.mbeans and its subpackages. It is possible
to fine-tune this permission, for example in order to allow access only to
certain MBeans. To fine-tune this permission, see the API documentation for
javax.management.MBeanPermission or the JMX Instrumentation and Agent
Specification.

permission javax.management.MBeanTrustPermission "register";
Trusts Derby code to be the source of MBeans and to register these in the MBean
server.

Combining permissions
You might grant one FilePermission that encompasses several or all of the permissions
instead of separately granting a number of the more specific permissions. For example:

permission java.io.FilePermission "${derby.system.home}/-",
 "read,write,delete";

This allows the Derby engine complete access to the system directory and any
databases contained in the system directory.

Examples of Java 2 security policy files for embedded Derby
Java 2 security policy file example 1

/* Grants permission to run Derby and access all */
/* databases under the Derby system home */
/* when it is specified by the system property */
/* Derby.system.home */

/* Note Derby.system.home must be an absolute pathname */

grant codeBase "file://f:/derby/lib/derby.jar" {

 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission.java.io.FilePermission "${derby.system.home}","read";
 permission java.io.FilePermission "${derby.system.home}${/}
 -", "read,write,delete";
 permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
 "write";
};

http://wiki.apache.org/db-derby/DerbyJMX

Java DB Developer's Guide

147

Java 2 security policy file example 2

/* Grants permission to run Derby and access all */
/* databases under the Derby system home */
/* when it defaults to the current directory */

grant codeBase "file://f:/derby/lib/derby.jar" {
 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission java.io.FilePermission "${derby.system.home}","read";
 permission java.io.FilePermission "${user.dir}${/}-",
 "read,write,delete";
 permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
 "write";

};

Java 2 security policy file example 3

/* Grants permission to run Derby and access a single */
/* database (salesdb) under the Derby system home */

/* Note Derby.system.home must be an absolute pathname */

grant codeBase "file://f:/derby/lib/derby.jar" {

 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.io.FilePermission "${derby.system.home}","read";
 permission java.io.FilePermission "${derby.system.home}${/}*",
 "read,write,delete";
 permission java.io.FilePermission "${derby.system.home}${/}
 salesdb${/}-", "read,write,delete";
 permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
 "write";

};

Java DB Developer's Guide

148

Developing tools and using Derby with an IDE

Applications such as database tools are designed to work with databases whose
schemas and contents are unknown in advance. This section discusses a few topics
useful for such applications.

Offering connection choices to the user
JDBC's java.sql.Driver.getPropertyInfo method allows a generic GUI tool to determine
the properties for which it should prompt a user in order to get enough information to
connect to a database. Depending on the values the user has supplied so far, additional
values might become necessary. It might be necessary to iterate though several calls to
getPropertyInfo.

If no more properties are necessary, the call returns an array of zero length.

In a Derby system, do not use the method against an instance of
org.apache.derby.jdbc.EmbeddedDriver. Instead, request the JDBC driver from the driver
manager:

java.sql.DriverManager.getDriver(
 "jdbc:derby:").getPropertyInfo(URL, Prop)

In a Derby system, the properties returned in the DriverPropertyInfo object are
connection URL attributes, including a list of booted databases in a system (the
databaseName attribute).

Databases in a system are not automatically booted until you connect with them. You can
configure your system to retain the former behavior, in which case the steps described in
this section will continue to work. See "derby.system.bootAll" in the Java DB Reference
Manual.

getPropertyInfo requires a connection URL and a Properties object as
parameters. Typically, what you pass are values that you will use in a future call to
java.sql.DriverManager.getConnection when you actually connect to the database.

A call to getPropertyInfo with parameters that contain sufficient information to connect
successfully returns an array of zero length. (Receiving this zero-length array does not
guarantee that the getConnection call will succeed, because something else could go
wrong.)

Repeat calls to getPropertyInfo until it returns a zero-length array or none of the
properties remaining are desired.

The DriverPropertyInfo Array

When a non-zero-length array is returned by getPropertyInfo, each element is a
DriverPropertyInfo object representing a connection URL attribute that has not
already been specified. Only those that make sense in the current context are returned.

This DriverPropertyInfo object contains:

• name of the attribute
• description
• current value

If an attribute has a default value, this is set in the value field of DriverPropertyInfo,
even if the attribute has not been set in the connection URL or the Properties

Java DB Developer's Guide

149

object. If the attribute does not have a default value and it is not set in the URL or
the Properties object, its value will be null.

• list of choices
• whether required for a connection request

Several fields in a DriverPropertyInfo object are allowed to be null.

DriverPropertyInfo array example

Here is some example code:

import java.sql.*;
import java.util.Properties;
// start with the least amount of information
// to see the full list of choices
// we could also enter with a URL and Properties
// provided by a user.
String url = "jdbc:derby:";
Properties info = new Properties();
Driver cDriver = DriverManager.getDriver(url);
for (;;)
 {
 DriverPropertyInfo[] attributes = cDriver.getPropertyInfo(
 url, info);
 // zero length means a connection attempt can be made
 if (attributes.length == 0)
 break;
 // insert code here to process the array, e.g.,
 // display all options in a GUI and allow the user to
 // pick and then set the attributes in info or URL.
 }
// try the connection
Connection conn = DriverManager.getConnection(url, info);

Using Derby with IDEs
When you use an integrated development environment (IDE) to develop an embedded
Derby application, you might need to run Derby within a server framework.

This is because an IDE might try connecting to the database from two different JVMs,
whereas only a single JVM instance should connect to a Derby database at one time
(multiple connections from the same JVM are allowed).

An "embedded Derby application" is one which runs in the same JVM
as the application. Such an application uses the embedded Derby
driver (org.apache.derby.jdbc.EmbeddedDriver) and connection URL
(jdbc:derby:databaseName). If you use this driver name or connection URL from
the IDE, when the IDE tries to open a second connection to the same database with the
embedded Derby, the attempt fails. Two JVMs cannot connect to the same database in
embedded mode.

IDEs and multiple JVMs

When you use an integrated development environment (IDE) to build a Java application,
you can launch the application from within the IDE at any point in the development
process. Typically, the IDE launches a JVM dedicated to the application. When the
application completes, the JVM exits. Any database connections established by the
application are closed.

During the development of a database application, most IDEs allow you to test individual
database connections and queries without running the entire application. When you test
an individual database connection or query (which requires a database connection),
the IDE might launch a JVM that runs in a specialized testing environment. In this case,

Java DB Developer's Guide

150

when a test completes, the JVM remains active and available for further testing, and the
database connection established during the test remains open.

Because of the behaviors of the IDE described above, if you use the embedded Derby
JDBC driver, you may encounter errors connecting in the following situations:

• You test an individual query or database connection and then try to run an
application that uses the same database as the tested feature.

The database connection established by testing the connection or query stays
open, and prevents the application from establishing a connection to the same
database.

• You run an application, and before it completes (for example, while it waits for user
input), you attempt to run a second application or to test a connection or query that
uses the same database as the first application.

Java DB Developer's Guide

151

SQL tips

This section provides some examples of interesting SQL features. It also includes a few
non-SQL tips.

Retrieving the database connection URL
Derby does not have a built-in function that returns the name of the database.
However, you can use DatabaseMetaData to return the connection URL of any local
Connection.

/* in java */
String myURL = conn.getMetaData().getURL();

Supplying a parameter only once
If you want to supply a parameter value once and use it multiple times within a query, put
it in the FROM clause with an appropriate CAST.

SELECT phonebook.*
 FROM phonebook, (VALUES (CAST(? AS INT), CAST(? AS VARCHAR(255))))
 AS Choice(choice, search_string)
 WHERE search_string = (case when choice = 1 then firstnme
 when choice=2 then lastname
 when choice=3 then phonenumber end);

This query selects what the second parameter will be compared to based on the value in
the first parameter. Putting the parameters in the FROM clause means that they need to
be applied only once to the query, and you can give them names so that you can refer to
them elsewhere in the query. In the example above, the first parameter is given the name
choice, and the second parameter is given the name search_string.

Defining an identity column
An identity column is a column that stores numbers that increment by one with each
insertion. Identity columns are sometimes called autoincrement columns.

Derby provides autoincrement as a built-in feature; see CREATE TABLE statement in the
Java DB Reference Manual.

Below is an example that shows how to use an identity column to create the MAP_ID
column of the MAPS table in the toursDB database.

CREATE TABLE MAPS
(
MAP_ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1,
 INCREMENT BY 1),
MAP_NAME VARCHAR(24) NOT NULL,
REGION VARCHAR(26),
AREA DECIMAL(8,4) NOT NULL,
PHOTO_FORMAT VARCHAR(26) NOT NULL,
PICTURE BLOB(102400),
UNIQUE (MAP_ID, MAP_NAME)
)

Using third-party tools

Java DB Developer's Guide

152

You can hook into any JDBC tool with just our JDBC Driver class name
(org.apache.derby.jdbc.EmbeddedDriver) and Derby's JDBC connection URL.

Tricks of the VALUES clause
This section contains some tips to use with the VALUES clause.

Multiple rows

Derby supports the complete SQL-92 VALUES clause; this is very handy in several
cases.

The first useful case is that it can be used to insert multiple rows:

INSERT INTO OneColumnTable VALUES 1,2,3,4,5,6,7,8

INSERT INTO TwoColumnTable VALUES
 (1, 'first row'),
 (2, 'second row'),
 (3, 'third row')

Dynamic parameters reduce the number of times execute requests are sent across:

ij> -- send 5 rows at a time:
ij> PREPARE p1 AS 'INSERT INTO ThreeColumnTable VALUES
(?,?,?), (?,?,?), (?,?,?), (?,?,?), (?,?,?)';
ij> EXECUTE p1 USING 'VALUES (''1st'',1,1,''2nd'',2,2,''3rd'',
3,3,''4th'',4,4,''5th'',5,5)';

Mapping column values to return values

Multiple-row VALUES tables are useful in mapping column values to desired return
values in queries.

-- get the names of all departments in OhioSELECT DeptName
FROM Depts,
(VALUES (1, 'Shoe'),
 (2, 'Laces'),
 (4, 'Polish'))
AS DeptMap(DeptCode,DeptDesc)
WHERE Depts.DeptCode = DeptMap.DeptCode
AND Depts.DeptLocn LIKE '%Ohio%'

You might also find it useful to store values used often for mapping in a persistent table
and then using that table in the query.

Creating empty queries

You may need Derby to create "empty" queries in existing applications for filling in bits of
functionality that Derby does not supply.

Empty queries of the right size and shape can be formed off a single values table and a
"WHERE FALSE" condition:

SELECT *
FROM (VALUES ('',1,"TRUE")) AS ProcedureInfo(ProcedureName,NumParameters,

ProcedureValid)
WHERE 1=0

Java DB Developer's Guide

153

Localizing Derby

Derby offers support for locales.

The word locale in the Java platform refers to an instance of a class that identifies
a particular combination of language and region. If a Java class varies its behavior
according to locale, it is said to be locale-sensitive. Derby provides some support for
locales for databases and other components such as the tools and the installer.

It also provides a feature to support databases in many different languages, a feature
which is independent of a particular territory.

When you create or upgrade a database, you can use the territory attribute to associate
a non-default territory with the database. For information about how to use the territory
attribute, see the Java DB Reference Manual.

SQL parser support for Unicode
To support users in many different languages, Derby's SQL parser understands all
Unicode characters and allows any Unicode character or number to be used in an
identifier.

Derby does not attempt to ensure that the characters in identifiers are valid in the
database's locale.

Character-based collation in Derby
A character set is a set of symbols and encodings. Character data types are represented
as Unicode 2.0 sequences in Derby.

How collation works in Derby

Derby supports a wide range of character sets and encodes all of the character sets by
using the Unicode support provided by the java.lang.Character class in the Java Virtual
Machine (JVM) in which the Derby database runs. See the Java API documentation for
the java.lang.Character class for the exact level of Unicode Standard that is supported.

A collation is a set of rules for comparing characters in a character set. In Derby the
collation rules affect comparisons of the CHAR and VARCHAR data types. Collation rules
also affect how the LIKE Boolean operator processes the CHAR, VARCHAR, CLOB, and
LONG VARCHAR data types.

The default Derby collation rule is based on the binary Unicode values of the characters.
So a character is greater than (<), equal to (=), or less than (>) another character based
on the numeric comparison of the Unicode values. This rule allows for very efficient
comparisons of character strings.

Note: When LIKE comparisons are used, Derby compares one character at a time for
non-metacharacters. This is different than the way Derby processes = comparisons. The
comparisons with the = operator compare the entire character string on left side of the
= operator with the entire character string on the right side of the = operator. See the
Differences between LIKE and equal (=) comparisons section below.

Territory-based collation

Derby also supports the ability to define collation rules that are appropriate to a territory,
and is referred to as territory-based collation. Derby supports the territories that Java
supports.

Java DB Developer's Guide

154

You can specifically set the territory of a database when you create the database. If
you do not specify a territory, Derby uses the default territory of the JVM in which the
database is created. Each JVM can support many territories that are independent
from the default territory for the JVM. Collation support for these additional territories is
provided through the java.text.RuleBasedCollator class and the set of rules for
these territories. Refer to the JVM specification for details of how these rules are used
to provide territory specific collation. Derby currently supports only running those rules
that can be loaded dynamically from the running JVM based on the territory attribute.
Overrides to these rules by the user are not supported.

The territory-based collation in Derby affects how the CHAR and VARCHAR data types
are compared. Specifying territory-based collation also impacts how the LIKE Boolean
operator processes CHAR, VARCHAR, CLOB, and LONG VARCHAR data.

Territory-based collation does add extra processing overhead to all character-based
comparison operations.

Database attributes that control collation
When you create a Derby database, the attributes that you set determine the collation
that is used with all of character data in the database. For example:
Table 13. The create database attributes that control collation

Example create commands Collation is driven by

jdbc:derby:abcDB;create=true Unicode codepoint collation
(UCS_BASIC), which is the default
collation for Derby databases.

jdbc:derby:abcDB;create=true;territory=es_MXUnicode codepoint collation
(UCS_BASIC). The collation attribute
is not set.

jdbc:derby:abcDB;create=true;collation=TERRITORY_BASEDThe territory of the JVM, since the
territory attribute is not set.
Tip: To determine the territory of the JVM,
run Locale.getDefault().

jdbc:derby:abcDB;create=true;territory=es_MX;collation=TERRITORY_BASEDThe territory attribute.

Collation examples

With Unicode codepoint collation (UCS_BASIC), the numerical values of the Unicode
encoding of the characters is used directly for ordering. For example, the FRUIT table
contains the NAME column that uses the VARCHAR(20) data type. The contents of the
NAME column are:

orange
apple
Banana
Pineapple
Grape

UCS_BASIC collation sorts all lower case letters before upper case letters. The
statement SELECT * FROM FRUIT ORDER BY NAME returns:

apple
orange
Banana
Grape
Pineapple

Java DB Developer's Guide

155

If the database is created with the territory attribute set to en_US (English language,
United States country code), and the collation attribute set to TERRITORY_BASED , the
results of the statement SELECT * FROM FRUIT ORDER BY NAME returns:

apple
Banana
Grape
orange
Pineapple

The collation set for the database also impacts comparison operators on character data
types. For example, the statement SELECT * FROM FRUIT WHERE NAME > Banana
returns:

 UCS_BASIC collation Territory-based collation
 Grape Grape
 Pineapple orange
 Pineapple

Differences between LIKE and equal (=) comparisons
When you use territory-based collation, the comparisons can return different results
when you use the LIKE and equal (=) operators. For example, suppose that the Derby
database is set to use a territory where the character 'z' has same collation elements as
'xy'. Consider the following two WHERE clauses:

1. WHERE 'zcb' = 'xycb'
2. WHERE 'zcb' LIKE 'xy_b

For WHERE clause 1, Derby returns TRUE because the collation elements for the entire
string 'zcb' will match the collation elements of the entire string 'xycb'.

For WHERE clause 2, Derby returns FALSE because collation element for character 'z'
does not match the collation element for character 'x'. In addition, when metacharacter
such as an underscore is used with the LIKE operator, the metacharacter counts for
one character in the string value. A clause like WHERE 'xycb' LIKE '_cb' returns FALSE
because 'x' is compared to the metacharacter _ and 'y' does not match 'c'.

Other components with locale support
Derby also provides locale support for the following components:

• Database error messages are in the language of the locale, if support is explicitly
provided for that locale with a special library.

For example, Derby explicitly supports Spanish-language error messages. If a
database's locale is set to one of the Spanish-language locales, Derby returns error
messages in the Spanish language.

• The Derby tools. In the case of the tools, locale support includes locale-specific
interface and error messages and localized data display.

For more information about localization of the Derby tools, see the Java DB Tools
and Utilities Guide.

Localized messages require special libraries.

The locale of the database is set by the territory=ll_CC attribute when the database
is created. However, the locale of the error messages and tools is not determined by
the locale of the database. The locale of the error messages and tools is determined
by the default system locale. This means that it is possible to create a database with a
non-default locale. In such a case, error messages are not returned in the language of
the locale of the database but are returned in the language of the default locale instead.

Java DB Developer's Guide

156

Note: You can override the default locale for ij with a property on the JVM. For more
information, see the Java DB Tools and Utilities Guide.

Messages libraries
The following list describes the items required in order for Derby to provide localized
messages.

• You must have the locale-specific Derby jar file. Derby provides such jars for only
some locales. You will find the locale jar files in the /lib directory in your Derby
installation.

• The locale-specific Derby jar file must be in the classpath.

The locale-specific Derby jar file is named derbyLocale_ll_CC.jar, where ll is
the two-letter code for language, and CC is the two-letter code for country. For
example, the name of the jar file for error messages for the German locale is
derbyLocale_de_DE.jar.

Derby supports the following locales:
• derbyLocale_cs.jar - Czech
• derbyLocale_de_DE.jar - German
• derbyLocale_es.jar - Spanish
• derbyLocale_fr.jar - French
• derbyLocale_hu.jar - Hungarian
• derbyLocale_it.jar - Italian
• derbyLocale_ja_JP.jar - Japanese
• derbyLocale_ko_KR.jar - Korean
• derbyLocale_pl.jar - Polish
• derbyLocale_pt_BR.jar - Brazilian Portuguese
• derbyLocale_ru.jar - Russian
• derbyLocale_zh_CN.jar - Simplified Chinese
• derbyLocale_zh_TW.jar - Traditional Chinese

Java DB Developer's Guide

157

Derby and standards

Derby adheres to SQL99 or newer standards wherever possible. This section describes
those features currently in Derby that are not standard; these features are currently being
evaluated and might be removed in future releases.

This section describes those parts of Derby that are non-standard or not typical for a
database system.

ALTER TABLE syntax
Derby uses a slightly different ALTER TABLE syntax for altering column defaults.
While SQL99 uses DROP and SET, Derby uses DEFAULT.

Calling functions and procedures
Derby supports the CALL (procedure) statement for calling external procedures
declared by the CREATE PROCEDURE statement. Built-in functions and
user-defined functions declared with the CREATE FUNCTION command can be
called as part of an SQL select statement or by using either a VALUES clause or
VALUES expression.

CLOB and BLOB data types
Derby supports the standard CLOB and BLOB data types. BLOB and CLOB values
are limited to a maximum of 2,147,483,647 characters.

Cursors
Derby uses JDBC's result sets, and does not provide SQL for manipulating cursors
except for positioned update and delete. Derby's scrollable insensitive cursors are
provided through JDBC, not through SQL commands.

DECIMAL max precision
For Derby, the maximum precision for DECIMAL columns is 31 digits. SQL99 does
not require a specific maximum precision for decimals, but most products have a
maximum precision of 15-32 digits.

Dynamic SQL
Derby uses JDBC's Prepared Statement, and does not provide SQL commands for
dynamic SQL.

Expressions on LONGs
Derby permits expressions on LONG VARCHAR; however, LONG VARCHAR data
types are not allowed in the following clauses, operations, constraints, functions, and
predicates:

• GROUP BY clauses
• ORDER BY clauses
• JOIN operations
• PRIMARY KEY constraints
• Foreign KEY constraints
• UNIQUE key constraints
• MIN aggregate function
• MAX aggregate function
• [NOT] IN predicate
• UNION, INTERSECT, and EXCEPT operators

SQL99 also places some restrictions on expressions on LONG types.
Information schema

Derby uses its own system catalog that can be accessed using standard JDBC
DatabaseMetadata calls. Derby does not provide the standard Information Schema
views.

NOT NULL characteristic
The SQL standard says NOT NULL is a constraint, and can be named and viewed in
the information schema as such. Derby does not provide naming for NOT NULL, nor

Java DB Developer's Guide

158

does it present it as a constraint in the information schema, only as a characteristic of
the column.

Stored routines and PSM
Derby supports external procedures using the Java programming language.
Procedures are managed using the CREATE PROCEDURE and DROP
PROCEDURE statements.

Transactions
All operations in Derby are transactional. Derby supports transaction control using
JDBC Connection methods. This includes support for savepoints and for the four
JDBC transaction isolation levels. The only SQL command provided for transaction
control is SET TRANSACTION ISOLATION.

XML data types and operators
Derby supports the XML data type and a set of operators that work with the XML data
type, but does not provide JDBC support for the XML data type. The XML data type and
operators are based on a small subset of the SQL/XML specification.

The XML data type and operators are defined only in the SQL layer.

There is no JDBC-side support for XML data types. It is not possible to bind directly
into an XML value or to retrieve an XML value directly from a result set. Instead, you
must bind and retrieve the XML data as Java strings or character streams by explicitly
specifying the appropriate XML operator as part of the SQL statements:

• Use the XMLPARSE operator for binding data into XML values.
• Use the XMLSERIALIZE operator to retrieve XML values from a result set.

Additionally, there is no JDBC metadata support for the XML data type.

The XML data type is not allowed in any of the clauses or operations that are described
in the section on expressions on LONG data types in Derby and standards.

For the XML operators to work properly, Derby requires that a JAXP parser, such as
Apache Xerces, and Apache Xalan are included in the Java classpath. If either the parser
or Xalan are missing from the classpath, Derby disallows any XML-related operations.

Classpath and version issues

Most Java virtual machines (JVMs) that are version 1.4 or later have a JAXP parser
embedded in the JVM. If you are using one of these JVMs, you may not need to add any
classes to your classpath. Some exceptions exist:

• In most version 1.4.2 JVMs, the version of Xalan that comes with the JVM is
not new enough, so you must override the version of Xalan in the JVM with a
newer version by using the Endorsed Standards Override Mechanism described
at http://java.sun.com/j2se/1.4.2/docs/guide/standards/. To use this mechanism,
download and install a binary distribution of Xalan from Apache and set the system
property java.endorsed.dirs to point to the Xalan installation directory.

• In Sun JVMs later than version 1.4, Sun has renamed the JAXP packages so that
Derby cannot access them. If you are using a Sun JVM later than version 1.4,
download and install a binary distribution of Xalan from Apache and place the
xalan.jar file in your classpath. The xalan.jar file automatically puts into the
classpath the other required jars that are in the same directory.

http://java.sun.com/j2se/1.4.2/docs/guide/standards/

Java DB Developer's Guide

159

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

	Cover
	Contents
	Copyright
	License
	Relationship between Java DB and
Derby
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	After installing
	The installation directory
	Batch files and shell scripts

	Derby and JVMs
	Derby libraries and classpath
	UNIX-specific issues
	Configuring file descriptors
	Scripts

	Upgrades
	Preparing to upgrade
	Upgrading a database
	Soft upgrade limitations

	JDBC applications and Derby basics
	Application development overview
	Derby embedded basics
	Derby JDBC driver
	Derby JDBC database connection URL
	Derby system
	One Derby instance for each Java Virtual Machine
	Booting databases
	Shutting down the system
	Defining the system directory
	The error log
	derby.properties
	Double-booting system behavior
	Recommended practices

	A Derby database
	The database directory
	Creating, dropping, and backing up databases
	Single database shutdown
	Storage and recovery
	Log on separate device
	Database pages
	Database-wide properties
	Derby database limitations

	Connecting to databases
	Connecting to databases within the system
	Connecting to databases outside the system directory
	Conventions for specifying the database path
	Special database access
	Accessing databases from the classpath
	Accessing databases from a jar or zip file

	Database connection examples

	Working with the database connection URL attributes
	Using the databaseName attribute
	Shutting down Derby or an individual database
	Creating and accessing a database
	Providing a user name and password
	Creating a database with territory-based collation
	Encrypting a database when you create it
	Creating an encrypted database with an external key
	Booting an encrypted database
	Specifying attributes in a properties object

	Working with Derby properties
	Properties overview
	Scope of properties
	Persistence of properties
	Precedence of properties
	Protection of database-wide properties

	Dynamic versus static properties

	Setting Derby properties
	Setting system-wide properties
	Changing the system-wide properties programmatically
	Changing the system-wide properties by using the derby.properties file
	Verifying system properties

	Setting database-wide properties
	Setting properties in a client/server environment
	Making dynamic or static changes to properties

	Properties case study

	Deploying Derby applications
	Deployment issues
	Embedded deployment application overview
	Deploying Derby in an embedded environment
	Embedded systems and properties

	Creating Derby databases for read-only use
	Creating and preparing the database for read-only use
	Deploying the database on the read-only media
	Transferring read-only databases to archive (jar or zip) files
	Accessing a read-only database in a zip/jar file
	Accessing databases within a jar file using the classpath
	Connecting to databases with ambiguous paths to databases in the file
system
	Connecting to databases when the path is ambiguous because of databases
in the classpath

	Databases on read-only media and DatabaseMetaData

	Loading classes from a database
	Class loading overview
	Create jar files for your application
	Add the jar file or files to the database
	Jar file examples
	Installing jar files
	Removing jar files
	Replacing jar files

	Enable database class loading with a property
	Code your applications

	Dynamic changes to jar files or to the database jar classpath
	Requirements for dynamic changes
	Notes on dynamic changes

	Derby server-side programming
	Programming database-side JDBC routines
	Database-side JDBC routines and nested connections
	Requirements for database-side JDBC routines using nested connections

	Database-side JDBC routines using non-nested connections
	Invoking a procedure using the CALL command

	Database-side JDBC routines and SQLExceptions
	User-defined SQLExceptions

	Programming trigger actions
	Trigger action overview
	Performing referential actions
	Accessing before and after rows
	Examples of trigger actions
	Triggers and exceptions
	Aborting statements and transactions

	Programming Derby-style table functions
	Overview of Derby-style table functions
	Preferred getXXX() methods for Derby-style table functions

	Example Derby-style table function
	Optimizer support for Derby-style table functions
	Measuring the cost of Derby-style table functions
	Example VTICosting implementation

	Controlling Derby application behavior
	The JDBC connection and transaction model
	Connections
	Statements
	ResultSets and Cursors
	Nested connections

	Transactions
	Transactions when auto-commit is disabled
	Using auto-commit
	Turning off auto-commit
	Explicitly closing Statements, ResultSets, and Connections
	Statement versus transaction runtime rollback
	Using savepoints

	Result set and cursor mechanisms
	Simple non-updatable result sets
	Updatable result sets
	Requirements for updatable result sets
	Forward only updatable result sets
	Scrollable updatable result sets
	Inserting rows with updatable result sets
	Naming or accessing the name of a cursor
	Extended updatable result set example

	Result sets and auto-commit
	Scrollable result sets
	Holdable result sets
	Holdable result sets and autocommit
	Non-holdable result set example

	Locking, concurrency, and isolation
	Isolation levels and concurrency
	Configuring isolation levels
	Lock granularity
	Types and scope of locks in Derby systems
	Exclusive locks
	Shared locks
	Update locks
	Lock compatibility
	Scope of locks
	Notes on locking

	Deadlocks
	Avoiding deadlocks
	Deadlock detection
	Lock wait timeouts
	Configuring deadlock detection and lock wait timeouts
	Debugging Deadlocks
	Programming applications to handle deadlocks

	Working with multiple connections to a single database
	Deployment options and threading and connection modes
	Multi-user database access
	Multiple connections from a single application

	Working with multiple threads sharing a single connection
	Pitfalls of sharing a connection among threads
	Multi-thread programming tips
	Example of threads sharing a statement

	Working with database threads in an embedded environment
	Working with Derby SQLExceptions in an application
	Information provided in SQL Exceptions
	Example of processing SQLExceptions

	Using Derby as a J2EE resource manager
	Classes that pertain to resource managers
	Getting a DataSource
	Shutting down or creating a database

	Derby and Security
	Configuring security for your environment
	Configuring security in a client/server environment
	Configuring security in an embedded environment

	Working with user authentication
	Enabling user authentication
	Defining users
	External directory service
	LDAP directory service
	Libraries for LDAP user authentication
	Setting up Derby to use your LDAP directory service
	Guest access to search for DNs
	LDAP performance issues
	Considerations when using Windows NT with LDAP
	LDAP restrictions

	JNDI-specific properties for external directory services
	User-defined class
	Example of setting a user-defined class

	Built-in Derby users
	Database-level properties
	System-level properties

	List of user authentication properties
	Programming applications for Derby user authentication
	Programming the application to provide the user and password
	Login failure exceptions with user authentication

	Users and authorization identifiers
	Authorization identifiers, user authentication, and user authorization
	Database owner

	User names and schemas
	Exceptions when using authorization identifiers

	User authorizations
	Setting the default connection access mode
	Setting access for individual users
	Read-only and full access permissions
	User authorization exceptions

	Setting the SQL standard authorization mode
	Using SQL standard authorization
	Using SQL roles
	SQL standard authorization exceptions

	Encrypting databases on disk
	Requirements for Derby encryption
	Working with encryption
	Encrypting databases on creation
	Encrypting an existing unencrypted database
	Creating the boot password
	Specifying an alternate encryption provider
	Specifying an alternate encryption algorithm

	Encrypting databases with a new key
	Encrypting databases with a new boot password
	Encrypting databases with a new external encryption key

	Booting an encrypted database

	Signed jar files
	Notes on the Derby security features
	User authentication and authorization examples
	User authentication example in a client/server environment
	User authentication and authorization client example

	User authentication example in a single-user, embedded environment
	User authentication and authorization embedded example

	User authentication examples using SQL authorization
	User authentication and SQL authorization client example
	User authentication and SQL authorization embedded example

	Running Derby under a security manager
	Granting permissions to Derby
	Examples of Java 2 security policy files for embedded Derby
	Java 2 security policy file example 1
	Java 2 security policy file example 2
	Java 2 security policy file example 3

	Developing tools and using Derby with an IDE
	Offering connection choices to the user
	The DriverPropertyInfo Array
	DriverPropertyInfo array example

	Using Derby with IDEs
	IDEs and multiple JVMs

	SQL tips
	Retrieving the database connection URL
	Supplying a parameter only once
	Defining an identity column
	Using third-party tools
	Tricks of the VALUES clause
	Multiple rows
	Mapping column values to return values
	Creating empty queries

	Localizing Derby
	SQL parser support for Unicode
	Character-based collation in Derby
	Other components with locale support
	Messages libraries

	Derby and standards
	XML data types and operators

	Trademarks

